

Practical complexities of probabilistic algorithms for solving Boolean polynomial systems

January 19, 2022

Stefano Barbero¹, Emanuele Bellini², Carlo Sanna¹, and <u>Javier Verbel</u>² ¹Politecnico di Torino, Torino, IT ²Technology Innovation Institute, Abu Dhabi, UAE

Definition (Polynomial Solving Problem)

Input: a set of polynomials $f_1(x_1, \ldots, x_n), \ldots, f_m(x_1, \ldots, x_n)$ in n unknowns with coefficients in \mathbb{F}_q

Output: $(a_1, \ldots, a_n) \in \mathbb{F}_q^n$ such that

$$f_1(a_1,\ldots,a_n)=\cdots=f_m(a_1,\ldots,a_n)=0$$

Polynomial Solving in Cryptography

 \blacksquare \mathcal{NP} -complete, any decision problem reduces to it.

Polynomial Solving in Cryptography

 \blacksquare \mathcal{NP} -complete, any decision problem reduces to it.

Directly to Multivariate cryptography

Polynomial Solving in Cryptography

- \blacksquare \mathcal{NP} -complete, any decision problem reduces to it.
- Directly to Multivariate cryptography
- Algebraic attacks:
 - 1 Legendre Pseudorandom Generation
 - 2 hash functions
 - 3 Cipher
 - 4 etc

Bruteforce (complexity $4 \log n \cdot 2^n$)

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5,
 - Crossbred.

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5, Crossbred.
- special algorithms for underdefined systems (*m* < *n*)

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5, Crossbred.
- special algorithms for underdefined systems (*m* < *n*)

None of them outperform bruteforce asymptotically, in the worst-case!

Cryptography Research Centre

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5, Crossbred.
- special algorithms for underdefined systems (*m* < *n*)

None of them outperform bruteforce asymptotically, in the worst-case!

(2017) First algorithm asymptotically faster than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R. Patur, S. Tamaki, and R. Williams

Cryptography Research Centre

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5, Crossbred.
- special algorithms for underdefined systems (*m* < *n*)

None of them outperform bruteforce asymptotically, in the worst-case!

- (2017) First algorithm asymptotically faster than bruteforce in the worst-case.
 - "Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R. Patur, S. Tamaki, and R. Williams
- (2019) Improved by A. Björklund, P. Kaski, and R. Williams
 - Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction

Cryptography Research Centre

- Bruteforce (complexity $4 \log n \cdot 2^n$)
- direct linearization
- Extended linearization (XL)
- Gröbner basis: Buchberger's, F4, and F5.
- Hybrid approaches: BooleanSolve, Hybrid-F5, Crossbred.
- special algorithms for underdefined systems (*m* < *n*)

None of them outperform bruteforce asymptotically, in the worst-case!

- (2017) First algorithm asymptotically faster than bruteforce in the worst-case.
 - "Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R. Patur, S. Tamaki, and R. Williams
- (2019) Improved by A. Björklund, P. Kaski, and R. Williams
 - Solving Systems of Polynomial Equations over GF(2) by a Parity-Counting Self-Reduction
- (2021) Improved by I. Dinur

"Solving Polynomial Systems over GF(2) by Multiple Parity-Counting" "Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation Systems

1. Preliminaries concepts

- 2. Probabilistic algorithms
- 3. Practical results

Preliminaries concepts

Definition: A Boolean function is a map $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

Note: f can be uniquely represented in $\mathbb{F}_2[x_1, \ldots, x_n]/(x_1^2 - x_1, \ldots, x_n^2 - x_n)$.

$$f:=\sum_{\mathbf{a}\in\mathbb{F}_2^n}\zeta_f(\mathbf{a})\cdot\mathbf{x}^{\mathbf{a}},\quad\text{where }\mathbf{x}^{\mathbf{a}}:=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}\text{ and }\zeta_f(\mathbf{a})\in\mathbb{F}_2$$

Definition: A Boolean function is a map $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

Note: f can be uniquely represented in $\mathbb{F}_2[x_1, \ldots, x_n] / (x_1^2 - x_1, \ldots, x_n^2 - x_n)$.

$$f := \sum_{\mathbf{a} \in \mathbb{F}_2^n} \zeta_f(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text{where } \mathbf{x}^{\mathbf{a}} := x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \text{ and } \zeta_f(\mathbf{a}) \in \mathbb{F}_2$$

Representing f as a vector of size 2^n .

$$[\zeta(\mathbf{a}) \mid \mathbf{a} \in \mathbb{F}_2^n]$$
Algebraic Normal Form (ANF)

$$\underbrace{[f(\mathbf{a}) \mid \mathbf{a} \in \mathbb{F}_2^n]}_{\text{Truth table}}$$

Definition: A Boolean function is a map $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

Note: f can be uniquely represented in $\mathbb{F}_2[x_1, \ldots, x_n] / (x_1^2 - x_1, \ldots, x_n^2 - x_n)$.

$$f := \sum_{\mathbf{a} \in \mathbb{F}_2^n} \zeta_f(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text{where } \mathbf{x}^{\mathbf{a}} := x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n} \text{ and } \zeta_f(\mathbf{a}) \in \mathbb{F}_2$$

Representing f as a vector of size 2^n .

Definition: A Boolean function is a map $f : \mathbb{F}_2^n \to \mathbb{F}_2$.

Note: f can be uniquely represented in $\mathbb{F}_2[x_1, \ldots, x_n]/(x_1^2 - x_1, \ldots, x_n^2 - x_n)$.

$$f:=\sum_{\mathbf{a}\in\mathbb{F}_2^n}\zeta_f(\mathbf{a})\cdot\mathbf{x}^{\mathbf{a}},\quad\text{where }\mathbf{x}^{\mathbf{a}}:=x_1^{a_1}x_2^{a_2}\cdots x_n^{a_n}\text{ and }\zeta_f(\mathbf{a})\in\mathbb{F}_2$$

Representing f as a vector of size 2^n .

• $\zeta[ANF \text{ of } f] = \text{truth table of } f$, $\zeta[\text{truth table of } f] = ANF \text{ of } f$

$$\zeta[\zeta[f]] = f Complexity = O(n2^n)$$

¹**downward closed set**: if $\mathcal{A} \subseteq \mathbb{F}_2^n$ is a *downward closed set*, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_2^n$ with $\mathbf{b} \leq \mathbf{a}$

Interpolation algorithm

Input : The **partial** truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_2^n$ a downward closed set.¹ **Output**: The **whole** truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathbb{F}_2^n]$.

¹downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_2^n$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_2^n$ with $\mathbf{b} \leq \mathbf{a}$

Interpolation algorithm

Input : The partial truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_2^n$ a downward closed set.¹ Output: The whole truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathbb{F}_2^n]$.

• it has complexity $O(n2^n)$.

¹downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_2^n$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_2^n$ with $\mathbf{b} \leq \mathbf{a}$

Interpolation algorithm

Input : The **partial** truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_2^n$ a downward closed set.¹ **Output**: The **whole** truth table $[f(\mathbf{a}) : \mathbf{a} \in \mathbb{F}_2^n]$.

- it has complexity $O(n2^n)$.
- if f has degree d, then know $[f(\mathbf{a}) : \mathbf{a} \in \mathbb{F}_2^n$, and $wt(\mathbf{a}) \leq d]$ has enough information to compute the **whole** truth table of f

¹**downward closed set**: if $\mathcal{A} \subseteq \mathbb{F}_2^n$ is a *downward closed set*, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_2^n$ with $\mathbf{b} \leq \mathbf{a}$

Definition (Characteristic polynomial of system of polynomials)

The polynomial

$$F(\mathbf{x}) := \prod_{i=1}^{m} (1 + p_i(\mathbf{x}))$$

is called the *characteristic polynomial* of the system $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x})$.

Definition (Characteristic polynomial of system of polynomials)

The polynomial

$$F(\mathbf{x}) := \prod_{i=1}^{m} (1 + p_i(\mathbf{x}))$$

is called the *characteristic polynomial* of the system $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x})$.

Properties

$$F(\mathbf{a}) = 1 \Leftrightarrow p_1(\mathbf{a}) = \cdots p_m(\mathbf{a}) = 0$$

• $\deg(p_i) = d \implies \deg(F) = md$ (very high)

Definition (Characteristic polynomial of system of polynomials)

The polynomial

$$F(\mathbf{x}) := \prod_{i=1}^{m} (1 + p_i(\mathbf{x}))$$

is called the *characteristic polynomial* of the system $p_1(\mathbf{x}), \ldots, p_m(\mathbf{x})$.

Properties

$$F(\mathbf{a}) = 1 \Leftrightarrow p_1(\mathbf{a}) = \cdots p_m(\mathbf{a}) = 0$$

• $\deg(p_i) = d \implies \deg(F) = md$ (very high)

•
$$G: \mathbb{F}_2^{n-n_1} \to \mathbb{F}_2$$
 s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$
 $G(\mathbf{b}) = 1 \Longrightarrow F(\mathbf{b}, \mathbf{c}) = 1 \text{ for some } \mathbf{c} \in \mathbb{F}_2^{n_1}$

 $\underline{G: \mathbb{F}_2^{n-n_1}} \to \mathbb{F}_2$ s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$

$$\underline{G: \mathbb{F}_2^{n-n_1} \to \mathbb{F}_2}$$
 s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$

- $I \quad G(\mathbf{b}) = 1 \Longrightarrow F(\mathbf{b}, \mathbf{c}) = 1 \text{ for some } \mathbf{c} \in \mathbb{F}_2^{n_1}.$
- $\deg(G) = dm n_1$ (Still very high!).

$$\underline{G: \mathbb{F}_2^{n-n_1}} \to \mathbb{F}_2$$
 s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$

- $I \quad G(\mathbf{b}) = 1 \Longrightarrow F(\mathbf{b}, \mathbf{c}) = 1 \text{ for some } \mathbf{c} \in \mathbb{F}_2^{n_1}.$
- $\deg(G) = dm n_1$ (Still very high!).

3 Parity :=
$$\sum_{\mathbf{b}\in\mathbb{F}_2^{n-n_1}} G(\mathbf{b}) = \sum_{\mathbf{a}\in\mathbb{F}_2^n} F(\mathbf{a})$$
 (parity of the number of solutions)

$$\underline{G: \mathbb{F}_2^{n-n_1}} \to \mathbb{F}_2$$
 s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$

1
$$G(\mathbf{b}) = 1 \Longrightarrow F(\mathbf{b}, \mathbf{c}) = 1$$
 for some $\mathbf{c} \in \mathbb{F}_2^{n_1}$.

2 $\deg(G) = dm - n_1$ (Still very high!).

3 Parity
$$:= \sum_{\mathbf{b} \in \mathbb{F}_2^{n-n_1}} G(\mathbf{b}) = \sum_{\mathbf{a} \in \mathbb{F}_2^n} F(\mathbf{a})$$
 (parity of the number of solutions)

Some algorithms computes a poly $ar{G}$ approximating G

- **Björklund et al.'s:** (many \tilde{G}) to compute Parity.
- **Dinur's first:** (many \tilde{G}) to compute Parity.
- Dinur's second: (few $ilde{G}$) A method to estimate ${f c}$ for every ${f b}$ such that $ilde{G}({f b})=1.$

$$\underline{G: \mathbb{F}_2^{n-n_1}} \to \mathbb{F}_2$$
 s.t. $G(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} F(\mathbf{y}, \mathbf{c})$

1
$$G(\mathbf{b}) = 1 \Longrightarrow F(\mathbf{b}, \mathbf{c}) = 1$$
 for some $\mathbf{c} \in \mathbb{F}_2^{n_1}$.

2 $\deg(G) = dm - n_1$ (Still very high!).

Berity $:= \sum_{\mathbf{b} \in \mathbb{F}_2^{n-n_1}} G(\mathbf{b}) = \sum_{\mathbf{a} \in \mathbb{F}_2^n} F(\mathbf{a})$ (parity of the number of solutions)

Some algorithms computes a poly $ar{G}$ approximating G

- **Björklund et al.'s:** (many \tilde{G}) to compute Parity.
- **Dinur's first:** (many \tilde{G}) to compute Parity.
- Dinur's second: (few $ilde{G}$) A method to estimate ${f c}$ for every ${f b}$ such that $ilde{G}({f b})=1.$

Lokshtanov et al.'s: Determine the consistency by a precise approx. of V, where

$$V(\mathbf{b}) = \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} F(\mathbf{b}, \mathbf{c})$$

If
$$\Pr \Bigl[ilde{F}(\mathbf{a}) = F(\mathbf{a}) \Bigr]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

If
$$\Pr \Bigl[ilde{F}(\mathbf{a}) = F(\mathbf{a}) \Bigr]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

 $\bullet \ \deg(\tilde{F}) \leq d\ell$

If
$$\Pr \Big[ilde F(\mathbf{a}) = F(\mathbf{a}) \Big]$$
 is close to one, then $ilde F$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \dots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

• $\deg(\tilde{F}) \le d\ell$ • $F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1$, otherwise

If
$$\Pr \Bigl[ilde{F}(\mathbf{a}) = F(\mathbf{a}) \Bigr]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

$$\begin{aligned} & \operatorname{deg}(\tilde{F}) \leq d\ell \\ & F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1, \text{otherwise} \\ & \operatorname{Pr}\Big[\tilde{F}(\mathbf{a}) = F(\mathbf{a})\Big] \geq 1 - 2^{-\ell} \end{aligned}$$

If
$$\Pr\left[ilde{F}(\mathbf{a})=F(\mathbf{a})
ight]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \dots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

 $\begin{aligned} & \operatorname{deg}(\tilde{F}) \leq d\ell \\ & F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1, \text{otherwise} \\ & \operatorname{Pr}\Big[\tilde{F}(\mathbf{a}) = F(\mathbf{a})\Big] \geq 1 - 2^{-\ell} \\ & \tilde{G}(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{y}, \mathbf{c}) \end{aligned}$

If
$$\Pr\left[ilde{F}(\mathbf{a})=F(\mathbf{a})
ight]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

$$\begin{aligned} & \operatorname{deg}(\tilde{F}) \leq d\ell \\ & F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1, \text{otherwise} \\ & \operatorname{Pr}\Big[\tilde{F}(\mathbf{a}) = F(\mathbf{a})\Big] \geq 1 - 2^{-\ell} \\ & \tilde{G}(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{y}, \mathbf{c}) \end{aligned}$$

•
$$\tilde{V}(\mathbf{b}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{b}, \mathbf{c})$$

If
$$\Pr\left[ilde{F}(\mathbf{a})=F(\mathbf{a})
ight]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

$$\begin{aligned} & \operatorname{deg}(\tilde{F}) \leq d\ell \\ & F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1, \text{otherwise} \\ & \operatorname{Pr}\Big[\tilde{F}(\mathbf{a}) = F(\mathbf{a})\Big] \geq 1 - 2^{-\ell} \\ & \tilde{G}(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{y}, \mathbf{c}) \end{aligned}$$

$$\begin{split} \bullet \ \tilde{V}(\mathbf{b}) &:= \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{b}, \mathbf{c}) \\ \bullet \ \text{Still, erros appear for many } \mathbf{b} \in \mathbb{F}_2^{n-n_1} \end{split}$$

If
$$\Pr\left[ilde{F}(\mathbf{a})=F(\mathbf{a})
ight]$$
 is close to one, then $ilde{F}$ approximates F

The Razborov–Smolensky construction

Let $\ell \in \{1, \ldots, m\}$ be an integer. Define $F(\mathbf{x}) = \prod_{i=1}^{m} (1 + p_i(\mathbf{x})) \quad \tilde{F}(x) := \prod_{i=1}^{\ell} (1 + R_i(\mathbf{x})),$ where $R_i(\mathbf{x}) := \sum_{j=1}^{m} \alpha_{ij} p_j(\mathbf{x})$, and the $\alpha_{ij} \in \mathbb{F}_2$ are chosen uniformly at random.

 $\begin{aligned} & \operatorname{deg}(\tilde{F}) \leq d\ell \\ & F(\mathbf{a}) = 1 \to \tilde{F}(\mathbf{a}) = 1, \text{otherwise} \\ & \operatorname{Pr}\Big[\tilde{F}(\mathbf{a}) = F(\mathbf{a})\Big] \geq 1 - 2^{-\ell} \\ & \tilde{G}(\mathbf{y}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{y}, \mathbf{c}) \end{aligned}$

- $\tilde{V}(\mathbf{b}) := \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{b}, \mathbf{c})$
- lacksquare Still, erros appear for many $\mathbf{b}\in\mathbb{F}_2^{n-n_1}$
- generate many \tilde{F} and define $G(\mathbf{b}) = 1 \iff \#\{\tilde{F} : \tilde{G}(\mathbf{b}) = 1\} > t_0,$ for a fixed integer t_0 .

Probabilistic algorithms

Cryptography Research Centre

Suppose that the input polynomials have degree d.

Cryptography Research Centre

Suppose that the input polynomials have degree d.

- **p**arameters: n, n_1, s, ℓ
- for $t = 1, \ldots, s$
 - 1 Symbolically compute the ANF

$$\tilde{V}_0(\mathbf{y}) = \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c}),$$

with a new \tilde{F} for each ${f c}.$

2 compute $\zeta(V_0)$ (truth table of V_0) .

Cryptography Research Centre

Suppose that the input polynomials have degree d.

- **p**arameters: n, n_1, s, ℓ
- for $t = 1, \ldots, s$
 - 1 Symbolically compute the ANF

$$\tilde{V}_0(\mathbf{y}) = \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c}),$$

with a new \tilde{F} for each ${\bf c}.$

- 2 compute $\zeta(V_0)$ (truth table of V_0) .
- 3 store $\zeta(V_0)$

Suppose that the input polynomials have degree d.

- **p**arameters: n, n_1, s, ℓ
- for $t = 1, \ldots, s$
 - 1 Symbolically compute the ANF

$$\tilde{V}_0(\mathbf{y}) = \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c}),$$

with a new \tilde{F} for each ${\bf c}.$

- 2 compute $\zeta(V_0)$ (truth table of V_0) . 3 store $\zeta(V_0)$
- for $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$: if $\#\{\tilde{V}(\mathbf{b}) = 1\} > 0.4s$: **return** True.
- otherwise return False

Cryptograph Research Centre

Suppose that the input polynomials have degree d.

- **p**arameters: n, n_1, s, ℓ
- for $t = 1, \ldots, s$
 - 1 Symbolically compute the ANF

$$\tilde{V}_0(\mathbf{y}) = \sum_{\mathbf{c} \in \mathbb{F}_2^{n_1}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c}),$$

with a new \tilde{F} for each ${f c}.$

- 2 compute $\zeta(V_0)$ (truth table of V_0) . 3 store $\zeta(V_0)$
- for $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$: if $\#\{\tilde{V}(\mathbf{b}) = 1\} > 0.4s$: **return** True.
- otherwise return False

Complexity

First loop:
$$T_1 = O^* \left(2^{n_1} \cdot {\binom{n-n_1}{\downarrow d\ell - n_1}} \right)$$

Second loop: $T_2 = O^*\left(2^{n-n_1}\right)$

Setting $\ell=n_1+2, n_1=\lfloor \delta n \rfloor$, and choosing δ s.t $T_1\approx T_2$ we have

complexity =
$$\begin{cases} O^*(2^{0.8756n}) \text{ if } d = 2, and \\ O^*(2^{(1-1/(5d))n}) \text{ if } d > 2 \end{cases}$$

9

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

■ parameters: n, n_1, s, ℓ Computes $\left[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}\right]$

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

- parameters: n, n_1, s, ℓ Computes $\left[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}\right]$
- for $k = 1, \ldots, s$
 - 1 $\tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d\ell-n_1}^{n-n_1}$ by recursive calls to Björklund's algo.

Note:
$$\tilde{G}(\mathbf{b}) = \sum_{\mathbf{z} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{b}, \mathbf{z}).$$

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

- parameters: n, n_1, s, ℓ Computes $\left[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}\right]$
- for $k=1,\ldots,s$
 - 1 $\tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d\ell-n_1}^{n-n_1}$ by recursive calls to Björklund's algo.

Note:
$$\tilde{G}(\mathbf{b}) = \sum_{\mathbf{z} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{b}, \mathbf{z})$$

2 Interpolate \tilde{G} and store it

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

- parameters: n, n_1, s, ℓ Computes $\left[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}\right]$
- for $k=1,\ldots,s$
 - 1 $\tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d\ell-n_1}^{n-n_1}$ by recursive calls to Björklund's algo.

Note:
$$\tilde{G}(\mathbf{b}) = \sum_{\mathbf{z} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{b}, \mathbf{z}).$$

2 Interpolate \tilde{G} and store it

■ for $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$: if $\#\{\tilde{F} \mid \tilde{G}(\mathbf{b}) = 1\} > s/2$: $G(\mathbf{b}) := 1$ (otherwise 0) return $\sum_{\mathbf{b}} G(\mathbf{b})$

Input polynomials p_1, \ldots, p_m have degree d, and $\mathcal{W}_t^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq t\}$

- parameters: n, n_1, s, ℓ Computes $[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}]$
- for $k=1,\ldots,s$
 - 1 $\tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d\ell-n_1}^{n-n_1}$ by recursive calls to Björklund's algo.

Note: $\tilde{G}(\mathbf{b}) = \sum_{\mathbf{z} \in \mathbb{F}_2^{n_1}} \tilde{F}(\mathbf{b}, \mathbf{z}).$

2 Interpolate \tilde{G} and store it

■ for $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$: if $\#\{\tilde{F} \mid \tilde{G}(\mathbf{b}) = 1\} > s/2$: $G(\mathbf{b}) := 1$ (otherwise 0) return $\sum_{\mathbf{b}} G(\mathbf{b})$

Complexity

$$\begin{split} T(n) &= \text{time of a size } n \text{ instance} \\ \text{Rec. calls: } T_1 &= O^* \left(T(n_1) \cdot \binom{n-n_1}{\downarrow d\ell - n_1} \right) \end{split}$$

Interpolation and last loop: $T_2 = O^* \left(2^{n-n_1} \right)$

Similarly, we force $T_1 \approx T_2$ so that have

$$\textit{complexity} = \left\{ \begin{array}{l} O^*\!\!\left(2^{0.804n}\right) \, \text{if} \, d = 2, and \\ \\ O^*\!\!\left(2^{(1-1/(2.7d))n}\right) \, \text{if} \, d > 2 \end{array} \right.$$

Similarly $\mathcal{W}_w^n := \{ \mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \le w \}$

parameters: $n, n_1, n_2 < n_1, s, \ell$,

Similarly $\mathcal{W}_w^n := \{ \mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \le w \}$

- **p**arameters: $n, n_1, n_2 < n_1, s, \ell$,
- Compute $[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}]$ by **one** recursive call to the algorithm computing

 $[G(\mathbf{b}) : \mathbf{b} \in \mathcal{W}_w^{n-n_1}]$

Similarly $\mathcal{W}_w^n := \{\mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \leq w\}$

- **p**arameters: $n, n_1, n_2 < n_1, s, \ell$,
- Compute $[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}]$ by **one** recursive call to the algorithm computing

$$[G(\mathbf{b}) : \mathbf{b} \in \mathcal{W}_w^{n-n_1}]$$

Finally,

return Parity =
$$\sum_{\mathbf{b} \in \mathbb{F}_2^{n-n_1}} G(\mathbf{b})$$

Similarly $\mathcal{W}_w^n := \{ \mathbf{a} \in \mathbb{F}_2^n \mid wt(\mathbf{a}) \le w \}$

- **p**arameters: $n, n_1, n_2 < n_1, s, \ell$,
- Compute $[G(\mathbf{b}) : \mathbf{b} \in \mathbb{F}_2^{n-n_1}]$ by **one** recursive call to the algorithm computing

$$[G(\mathbf{b}) : \mathbf{b} \in \mathcal{W}_w^{n-n_1}]$$

Finally,

return Parity =
$$\sum_{\mathbf{b} \in \mathbb{F}_2^{n-n_1}} G(\mathbf{b})$$

Complexity

$$\textit{complexity} = \begin{cases} O^*(2^{0.6943n}) \text{ if } d = 2, and \\ O^*(2^{(1-1/(2d))n}) \text{ if } d > 2 \end{cases}$$

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G.

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

Repeat few times do the following:

Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- \blacksquare compute the truth table of \tilde{G}

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of \tilde{G}
 - $\forall (\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d(n_1+1)-n_1}^{n-n_1} \times \mathbb{F}_2^{n_1} :$ $\forall i \ R_i(\mathbf{b}, \mathbf{c}) = 0?$

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of \tilde{G}
 - 1 \forall (**b**, **c**) $\in \mathcal{W}_{d(n_1+1)-n_1}^{n-n_1} \times \mathbb{F}_2^{n_1}$: $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$? Yes: $\tilde{G}(\mathbf{b}) = 1$ No: $\tilde{G}(\mathbf{b}) = 0$

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of \$\tilde{G}\$
 \$\forall (\mathbf{b}, \mathbf{c}) \in \$\mathcal{W}_{d(n_1+1)-n_1}\$ \times \$\mathbf{F}_2^{n_1}\$:
 \$\forall i \$R_i(\mathbf{b}, \mathbf{c}) = 0\$?
 Yes: \$\tilde{G}(\mathbf{b}) = 1\$ No: \$\tilde{G}(\mathbf{b}) = 0\$
 Interpolate \$\tilde{G}\$.

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G. parameters: n, n_1

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of \tilde{G}
 - $\forall (\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d(n_1+1)-n_1}^{n-n_1} \times \mathbb{F}_2^{n_1}:$
 - $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$?
 - Yes: $\tilde{G}(\mathbf{b}) = 1$ No: $\tilde{G}(\mathbf{b}) = 0$ 2 Interpolate \tilde{G} .
- For each $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$ s.t $\tilde{G}(\mathbf{b}) = 1$ somehow compute $\mathbf{c} \in \mathbb{F}_2^{n-n_1}$ s.t $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$

parameters: n, n_1

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G.

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of \tilde{G}
 - $\forall (\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d(n_1+1)-n_1}^{n-n_1} \times \mathbb{F}_2^{n_1} :$ $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0?$
 - Yes: $\tilde{G}(\mathbf{b}) = 1$ No: $\tilde{G}(\mathbf{b}) = 0$ 2 Interpolate \tilde{G} .
- For each $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$ s.t $\tilde{G}(\mathbf{b}) = 1$ somehow compute $\mathbf{c} \in \mathbb{F}_2^{n-n_1}$ s.t $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$

- if (\mathbf{b}, \mathbf{c}) showed up before, then check if $p_1(\mathbf{b}, \mathbf{c}) = \cdots = p_{n_1+1}(\mathbf{b}, \mathbf{c}) = 0$
- continue until one solution is found

parameters: n, n_1

Repeat few times do the following:

- Generate R_1, \ldots, R_{n_1+1} random lin. comb. of p_1, \ldots, p_m
- compute the truth table of G
 1 ∀ (**b**, **c**) ∈ W^{n-n₁}_{d(n+1)-n₁} × 𝔽^{n₁}
 - $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$?
 - Yes: $\tilde{G}(\mathbf{b}) = 1$ No: $\tilde{G}(\mathbf{b}) = 0$ 2 Interpolate \tilde{G} .
- For each $\mathbf{b} \in \mathbb{F}_2^{n-n_1}$ s.t $\tilde{G}(\mathbf{b}) = 1$ somehow compute $\mathbf{c} \in \mathbb{F}_2^{n-n_1}$ s.t $\forall i R_i(\mathbf{b}, \mathbf{c}) = 0$

- if (\mathbf{b}, \mathbf{c}) showed up before, then check if $p_1(\mathbf{b}, \mathbf{c}) = \cdots = p_{n_1+1}(\mathbf{b}, \mathbf{c}) = 0$
- continue until one solution is found

Complexity

Let p_1, \ldots, p_m be the input polys. Here we doesn't accurately compute G.

$$\textit{complexity} = \left\{ \begin{array}{l} O\left(n^2 \cdot 2^{0.815n}\right) \text{ if } d = 2, and \\ \\ O\left(n^2 \cdot 2^{(1-1/(2.7d))n}\right) \text{ if } d > 2 \end{array} \right.$$

Practical results

Probability of success

Björklund et al.'s with $\lambda = 0.1967$ and several values of s.

- $\bullet \,\, s = 48n+1$ in Björklund and Dinur's first
- Internal iterations can be reduced!
- similar result for Dinur1
- A bit fluctuant for Lokshtanov (still small)
- Dinur2 always success probability \geq 0.9

Practical times complexities

14

Rate of growth and outperformance of bruteforce (BF)

Table 1: Growth rate of the practical complexity of **solving a square quadratic** system with at most one solution. In the first three rows, it means with probability of success greater than 2/3.

Algorithm	n_{max}	Experimental ($14 \le n \le n_{max}$)	Theoretical $(n o \infty)$	Beat (BF) for $n \ge$
Lokshtanov et al.'s	17	$2^{0.912}$	$2^{0.876}$	129
Björklund et al.'s	25	$2^{0.876}$	$2^{0.804}$	60
Dinur's first	25	$2^{0.971}$	$2^{0.694}$	132
Dinur's second	30	$2^{0.818}$	$2^{0.815}$	33
Bruteforce	30	$2^{1.022}$	2^1	

Fast implementations?

1 Fast implementations?

2 Parallel implementations (on GPUs)? How deal with memory access cost?

- **1** Fast implementations?
- 2 Parallel implementations (on GPUs)? How deal with memory access cost?
- 3 Quantum versions of the algorithms?

- [Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Anne Canteaut and Yuval Ishai, editors, *Advances in Cryptology – EUROCRYPT 2020*, pages 183–211, Cham, 2020. Springer International Publishing.
- [Beu21] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar maps. In Andreas Hülsing and Riham AlTawy, editors, *Selected Areas in Cryptography*. Springer International Publishing, 2021.
- [CFMR⁺17] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryckeghem. GeMSS: A great multivariate short signature. NIST CSRC, 2017. Official website: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

References II

- [CHR⁺18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. SOFIA: MQ-based signatures in the qrom. In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography – PKC 2018, pages 3–33, Cham, 2018. Springer International Publishing.
- [CHR⁺20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. MQDSS specifications, 2020. http://mqdss.org/specification.html.
- [DCP⁺17] J. Ding, M.S. Chen, A. Petzoldt, D. Schmidt, and B.Y. Yang. Rainbow. NIST CSRC, 2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/Rainbow.zip.
 - [Deu85] David Deutsch. Quantum Theory, the Church–Turing Principle and the Universal Quantum Computer. *Proceedings of the Royal Society of London*. A. *Mathematical and Physical Sciences*, 400(1818):97–117, 1985.

Valiant-Vazirani affine hashing

- it isolates one solution to the system
- add k random linear equations to original system
- $k = \log |S|$, where S is the set of solutions.
- For the probability $\Pr[U_x]$ that $x \in \mathcal{S}$ is the only solution, we have

$$\Pr[U_x] \ge \frac{1}{2^{k+3}}.$$

Therefore

$$\Pr[\bigcup_{x \in \mathcal{S}} U_x] = \sum_{x \in \mathcal{S}} \Pr[U_x] \ge \frac{1}{8}.$$

• repeat this up to $8n \log n$ times. With probability 1 - 1/n some of the solutions would be isolated.

$$U_0(y) = \sum_{b \in \mathbb{F}_2^{n_1}} \widetilde{F}(y, b)$$
 and $U_i(y) = \sum_{b \in \mathbb{F}_2^{n_1-1}} \widetilde{F}_{|b_i=0}(y, b)$ for $i = 1, ..., n_1$,