
Practical complexities of probabilistic algorithms
for solving Boolean polynomial systems

January 19, 2022

Stefano Barbero 1, Emanuele Bellini2, Carlo Sanna 1, and Javier Verbel 2

1Politecnico di Torino, Torino, IT 2Technology Innovation Institute, Abu Dhabi, UAE

Definition (Polynomial Solving Problem)

Input: a set of polynomials f1(x1, . . . , xn), . . . , fm(x1, . . . , xn) inn unknowns with
coefficients inFq

Output: (a1, . . . , an) ∈ Fnq such that

f1(a1, . . . , an) = · · · = fm(a1, . . . , an) = 0

2

Polynomial Solving in Cryptography

NP-complete, any decision problem reduces to it.
Directly to Multivariate cryptography
Algebraic attacks:
1 Legendre Pseudorandom Generation
2 hash functions
3 Cipher
4 etc

3

Polynomial Solving in Cryptography

NP-complete, any decision problem reduces to it.

Directly to Multivariate cryptography
Algebraic attacks:
1 Legendre Pseudorandom Generation
2 hash functions
3 Cipher
4 etc

3

Polynomial Solving in Cryptography

NP-complete, any decision problem reduces to it.
Directly to Multivariate cryptography

Algebraic attacks:
1 Legendre Pseudorandom Generation
2 hash functions
3 Cipher
4 etc

3

Polynomial Solving in Cryptography

NP-complete, any decision problem reduces to it.
Directly to Multivariate cryptography
Algebraic attacks:
1 Legendre Pseudorandom Generation
2 hash functions
3 Cipher
4 etc

3

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)

direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization

Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)

Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.

Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.

special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams

(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Some algorithms to solve the polynomilas over finite fields

Bruteforce (complexity 4 log n · 2n)
direct linearization
Extended linearization (XL)
Gröbner basis: Buchberger’s, F4,
and F5.
Hybrid approaches:
BooleanSolve, Hybrid-F5,
Crossbred.
special algorithms for
underdefined systems (m < n)

None of them outperform
bruteforce asymptotically, in the

worst-case!

(2017) First algorithm asymptotically faster
than bruteforce in the worst-case.

"Beating Brute Force for Systems of Polynomial
Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams
(2019) Improved by A. Björklund, P. Kaski, and
R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

(2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
over GF(2)"

4

Contents

1. Preliminaries concepts

2. Probabilistic algorithms

3. Practical results

Preliminaries concepts

Boolean function

4

Boolean function

Definition: A Boolean function is a map f : Fn2 → F2.

Note: f can be uniquely represented inF2[x1, . . . , xn] /(x
2
1 − x1, . . . , x2n − xn).

f :=
∑
a∈Fn

2

ζf (a) · xa, wherexa := xa11 x
a2
2 · · ·x

an
n and ζf (a) ∈ F2

4

Boolean function

Definition: A Boolean function is a map f : Fn2 → F2.

Note: f can be uniquely represented inF2[x1, . . . , xn] /(x
2
1 − x1, . . . , x2n − xn).

f :=
∑
a∈Fn

2

ζf (a) · xa, wherexa := xa11 x
a2
2 · · ·x

an
n and ζf (a) ∈ F2

Representing f as a vector of size 2n.

[ζ(a) | a ∈ Fn2]︸ ︷︷ ︸
Algebraic Normal Form (ANF)

[f(a) | a ∈ Fn2]︸ ︷︷ ︸
Truth table

4

Boolean function

Definition: A Boolean function is a map f : Fn2 → F2.

Note: f can be uniquely represented inF2[x1, . . . , xn] /(x
2
1 − x1, . . . , x2n − xn).

f :=
∑
a∈Fn

2

ζf (a) · xa, wherexa := xa11 x
a2
2 · · ·x

an
n and ζf (a) ∈ F2

Representing f as a vector of size 2n.

[ζ(a) | a ∈ Fn2]︸ ︷︷ ︸
Algebraic Normal Form (ANF)

ζ[f]←−−−−−−−−−→
Zeta transform

[f(a) | a ∈ Fn2]︸ ︷︷ ︸
Truth table

4

Boolean function

Definition: A Boolean function is a map f : Fn2 → F2.

Note: f can be uniquely represented inF2[x1, . . . , xn] /(x
2
1 − x1, . . . , x2n − xn).

f :=
∑
a∈Fn

2

ζf (a) · xa, wherexa := xa11 x
a2
2 · · ·x

an
n and ζf (a) ∈ F2

Representing f as a vector of size 2n.

[ζ(a) | a ∈ Fn2]︸ ︷︷ ︸
Algebraic Normal Form (ANF)

ζ[f]←−−−−−−−−−→
Zeta transform

[f(a) | a ∈ Fn2]︸ ︷︷ ︸
Truth table

ζ[ANF of f] = truth table of f , ζ[truth table of f] = ANF of f

ζ[ζ[f]] = f
Complexity = O(n2n) 4

Interpolation of Boolean function

Interpolation algorithm

Input : The partial truth table [f(a) : a ∈ A]with supp(f) ⊆ A, andA ⊆ Fn2 a downward
closed set. 1

Output: The whole truth table [f(a) : a ∈ Fn2].

it has complexityO(n2n).

if f has degree d, then know [f(a) : a ∈ Fn2 , andwt(a) ≤ d] has enough information to
compute the whole truth table of f

1downward closed set: ifA ⊆ Fn
2 is a downward closed set, that is, ifa ∈ A implies thatb ∈ A for everyb ∈ Fn

2

withb ≤ a
5

Interpolation of Boolean function

Interpolation algorithm

Input : The partial truth table [f(a) : a ∈ A]with supp(f) ⊆ A, andA ⊆ Fn2 a downward
closed set. 1

Output: The whole truth table [f(a) : a ∈ Fn2].

it has complexityO(n2n).

if f has degree d, then know [f(a) : a ∈ Fn2 , andwt(a) ≤ d] has enough information to
compute the whole truth table of f

1downward closed set: ifA ⊆ Fn
2 is a downward closed set, that is, ifa ∈ A implies thatb ∈ A for everyb ∈ Fn

2

withb ≤ a
5

Interpolation of Boolean function

Interpolation algorithm

Input : The partial truth table [f(a) : a ∈ A]with supp(f) ⊆ A, andA ⊆ Fn2 a downward
closed set. 1

Output: The whole truth table [f(a) : a ∈ Fn2].

it has complexityO(n2n).

if f has degree d, then know [f(a) : a ∈ Fn2 , andwt(a) ≤ d] has enough information to
compute the whole truth table of f

1downward closed set: ifA ⊆ Fn
2 is a downward closed set, that is, ifa ∈ A implies thatb ∈ A for everyb ∈ Fn

2

withb ≤ a
5

Interpolation of Boolean function

Interpolation algorithm

Input : The partial truth table [f(a) : a ∈ A]with supp(f) ⊆ A, andA ⊆ Fn2 a downward
closed set. 1

Output: The whole truth table [f(a) : a ∈ Fn2].

it has complexityO(n2n).

if f has degree d, then know [f(a) : a ∈ Fn2 , andwt(a) ≤ d] has enough information to
compute the whole truth table of f

1downward closed set: ifA ⊆ Fn
2 is a downward closed set, that is, ifa ∈ A implies thatb ∈ A for everyb ∈ Fn

2

withb ≤ a
5

Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)

The polynomial

F (x) :=

m∏
i=1

(1 + pi(x))

is called the characteristic polynomial of the system p1(x), . . . , pm(x).

Properties

F (a) = 1⇔ p1(a) = · · · pm(a) = 0

deg(pi) = d =⇒ deg(F) = md (very high)

G : Fn−n1
2 → F2 s.t. G(y) :=

∑
c∈Fn1

2
F (y, c)

G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

6

Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)

The polynomial

F (x) :=

m∏
i=1

(1 + pi(x))

is called the characteristic polynomial of the system p1(x), . . . , pm(x).

Properties

F (a) = 1⇔ p1(a) = · · · pm(a) = 0

deg(pi) = d =⇒ deg(F) = md (very high)

G : Fn−n1
2 → F2 s.t. G(y) :=

∑
c∈Fn1

2
F (y, c)

G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

6

Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)

The polynomial

F (x) :=

m∏
i=1

(1 + pi(x))

is called the characteristic polynomial of the system p1(x), . . . , pm(x).

Properties

F (a) = 1⇔ p1(a) = · · · pm(a) = 0

deg(pi) = d =⇒ deg(F) = md (very high)

G : Fn−n1
2 → F2 s.t. G(y) :=

∑
c∈Fn1

2
F (y, c)

G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

6

Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)

The polynomial

F (x) :=

m∏
i=1

(1 + pi(x))

is called the characteristic polynomial of the system p1(x), . . . , pm(x).

Properties

F (a) = 1⇔ p1(a) = · · · pm(a) = 0

deg(pi) = d =⇒ deg(F) = md (very high)

G : Fn−n1
2 → F2 s.t. G(y) :=

∑
c∈Fn1

2
F (y, c)

G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 . 6

G : Fn−n12 → F2 s.t. G(y) :=
∑

c∈Fn1
2
F (y, c)

1 G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

2 deg(G) = dm− n1 (Still very high!).

3 Parity :=
∑

b∈Fn−n1
2

G(b) =
∑

a∈Fn
2
F (a) (parity of the number of solutions)

Some algorithms computes a poly G̃ approximatingG

Björklund et al.’s: (many G̃) to computeParity.
Dinur’s first: (many G̃) to computeParity.
Dinur’s second: (few G̃) A method to estimate c for everyb such that G̃(b) = 1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. ofV , where

V (b) =
∑

c∈Fn1
2

scF (b, c)

7

G : Fn−n12 → F2 s.t. G(y) :=
∑

c∈Fn1
2
F (y, c)

1 G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

2 deg(G) = dm− n1 (Still very high!).

3 Parity :=
∑

b∈Fn−n1
2

G(b) =
∑

a∈Fn
2
F (a) (parity of the number of solutions)

Some algorithms computes a poly G̃ approximatingG

Björklund et al.’s: (many G̃) to computeParity.
Dinur’s first: (many G̃) to computeParity.
Dinur’s second: (few G̃) A method to estimate c for everyb such that G̃(b) = 1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. ofV , where

V (b) =
∑

c∈Fn1
2

scF (b, c)

7

G : Fn−n12 → F2 s.t. G(y) :=
∑

c∈Fn1
2
F (y, c)

1 G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

2 deg(G) = dm− n1 (Still very high!).

3 Parity :=
∑

b∈Fn−n1
2

G(b) =
∑

a∈Fn
2
F (a) (parity of the number of solutions)

Some algorithms computes a poly G̃ approximatingG

Björklund et al.’s: (many G̃) to computeParity.
Dinur’s first: (many G̃) to computeParity.
Dinur’s second: (few G̃) A method to estimate c for everyb such that G̃(b) = 1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. ofV , where

V (b) =
∑

c∈Fn1
2

scF (b, c)

7

G : Fn−n12 → F2 s.t. G(y) :=
∑

c∈Fn1
2
F (y, c)

1 G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

2 deg(G) = dm− n1 (Still very high!).

3 Parity :=
∑

b∈Fn−n1
2

G(b) =
∑

a∈Fn
2
F (a) (parity of the number of solutions)

Some algorithms computes a poly G̃ approximatingG

Björklund et al.’s: (many G̃) to computeParity.
Dinur’s first: (many G̃) to computeParity.
Dinur’s second: (few G̃) A method to estimate c for everyb such that G̃(b) = 1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. ofV , where

V (b) =
∑

c∈Fn1
2

scF (b, c)

7

G : Fn−n12 → F2 s.t. G(y) :=
∑

c∈Fn1
2
F (y, c)

1 G(b) = 1 =⇒ F (b, c) = 1 for some c ∈ Fn1
2 .

2 deg(G) = dm− n1 (Still very high!).

3 Parity :=
∑

b∈Fn−n1
2

G(b) =
∑

a∈Fn
2
F (a) (parity of the number of solutions)

Some algorithms computes a poly G̃ approximatingG

Björklund et al.’s: (many G̃) to computeParity.
Dinur’s first: (many G̃) to computeParity.
Dinur’s second: (few G̃) A method to estimate c for everyb such that G̃(b) = 1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. ofV , where

V (b) =
∑

c∈Fn1
2

scF (b, c)

7

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`

F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0.

8

Approximation techniques

IfPr
[
F̃ (a) = F (a)

]
is close to one, then F̃ approximatesF .

The Razborov–Smolensky construction

Let ` ∈ {1, . . . ,m} be an integer. Define

F (x) =

m∏
i=1

(1 + pi(x)) F̃ (x) :=
∏̀
i=1

(1 +Ri(x)),

whereRi(x) :=
∑m

j=1 αijpj(x), and theαij ∈ F2 are chosen uniformly at random.

deg(F̃) ≤ d`
F (a) = 1→ F̃ (a) = 1, otherwise

Pr
[
F̃ (a) = F (a)

]
≥ 1− 2−`

G̃(y) :=
∑

c∈Fn1
2
F̃ (y, c)

Ṽ (b) :=
∑

c∈Fn1
2
scF̃ (b, c)

Still, erros appear for manyb ∈ Fn−n1
2

generate many F̃ and define
G(b) = 1⇐⇒ #{F̃ : G̃(b) = 1} > t0,
for a fixed integer t0. 8

Probabilistic
algorithms

Lokshtanov et al.’s

Suppose that the input polynomials have degree d.

parameters: n, n1, s, `
for t = 1, . . . , s

1 Symbolically compute the ANF

Ṽ0(y) =
∑

c∈Fn1
2

scF̃ (y, c),

with a new F̃ for each c.
2 compute ζ(V0) (truth table ofV0) .
3 store ζ(V0)

forb ∈ Fn−n1
2 :

if#{Ṽ (b) = 1} > 0.4s:
return True.

otherwise return False

Complexity

First loop: T1 = O∗
(
2n1 ·

(
n−n1

↓d`−n1

))
Second loop: T2 = O∗ (2n−n1)

Setting ` = n1 + 2,n1 = bδnc, and choosing δ s.t
T1 ≈ T2 we have

complexity =

 O∗
(
20.8756n

)
if d = 2, and

O∗
(
2(1−1/(5d))n

)
if d > 2

9

Lokshtanov et al.’s

Suppose that the input polynomials have degree d.

parameters: n, n1, s, `
for t = 1, . . . , s

1 Symbolically compute the ANF

Ṽ0(y) =
∑

c∈Fn1
2

scF̃ (y, c),

with a new F̃ for each c.
2 compute ζ(V0) (truth table ofV0) .

3 store ζ(V0)

forb ∈ Fn−n1
2 :

if#{Ṽ (b) = 1} > 0.4s:
return True.

otherwise return False

Complexity

First loop: T1 = O∗
(
2n1 ·

(
n−n1

↓d`−n1

))
Second loop: T2 = O∗ (2n−n1)

Setting ` = n1 + 2,n1 = bδnc, and choosing δ s.t
T1 ≈ T2 we have

complexity =

 O∗
(
20.8756n

)
if d = 2, and

O∗
(
2(1−1/(5d))n

)
if d > 2

9

Lokshtanov et al.’s

Suppose that the input polynomials have degree d.

parameters: n, n1, s, `
for t = 1, . . . , s

1 Symbolically compute the ANF

Ṽ0(y) =
∑

c∈Fn1
2

scF̃ (y, c),

with a new F̃ for each c.
2 compute ζ(V0) (truth table ofV0) .
3 store ζ(V0)

forb ∈ Fn−n1
2 :

if#{Ṽ (b) = 1} > 0.4s:
return True.

otherwise return False

Complexity

First loop: T1 = O∗
(
2n1 ·

(
n−n1

↓d`−n1

))
Second loop: T2 = O∗ (2n−n1)

Setting ` = n1 + 2,n1 = bδnc, and choosing δ s.t
T1 ≈ T2 we have

complexity =

 O∗
(
20.8756n

)
if d = 2, and

O∗
(
2(1−1/(5d))n

)
if d > 2

9

Lokshtanov et al.’s

Suppose that the input polynomials have degree d.

parameters: n, n1, s, `
for t = 1, . . . , s

1 Symbolically compute the ANF

Ṽ0(y) =
∑

c∈Fn1
2

scF̃ (y, c),

with a new F̃ for each c.
2 compute ζ(V0) (truth table ofV0) .
3 store ζ(V0)

forb ∈ Fn−n1
2 :

if#{Ṽ (b) = 1} > 0.4s:
return True.

otherwise return False

Complexity

First loop: T1 = O∗
(
2n1 ·

(
n−n1

↓d`−n1

))
Second loop: T2 = O∗ (2n−n1)

Setting ` = n1 + 2,n1 = bδnc, and choosing δ s.t
T1 ≈ T2 we have

complexity =

 O∗
(
20.8756n

)
if d = 2, and

O∗
(
2(1−1/(5d))n

)
if d > 2

9

Lokshtanov et al.’s

Suppose that the input polynomials have degree d.

parameters: n, n1, s, `
for t = 1, . . . , s

1 Symbolically compute the ANF

Ṽ0(y) =
∑

c∈Fn1
2

scF̃ (y, c),

with a new F̃ for each c.
2 compute ζ(V0) (truth table ofV0) .
3 store ζ(V0)

forb ∈ Fn−n1
2 :

if#{Ṽ (b) = 1} > 0.4s:
return True.

otherwise return False

Complexity

First loop: T1 = O∗
(
2n1 ·

(
n−n1

↓d`−n1

))
Second loop: T2 = O∗ (2n−n1)

Setting ` = n1 + 2,n1 = bδnc, and choosing δ s.t
T1 ≈ T2 we have

complexity =

 O∗
(
20.8756n

)
if d = 2, and

O∗
(
2(1−1/(5d))n

)
if d > 2

9

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]
for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]

for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]
for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]
for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]
for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Björklund et al.’s

Input polynomials p1, . . . , pm have degree d, andWn
t := {a ∈ Fn2 | wt(a) ≤ t}

parameters: n, n1, s, `
Computes

[
G(b) : b ∈ Fn−n1

2

]
for k = 1, . . . , s

1 G̃(b) for eachb ∈ Wn−n1

d`−n1
by

recursive calls to Björklund’s algo.

Note: G̃(b) =
∑

z∈Fn1
2
F̃ (b, z).

2 Interpolate G̃ and store it

forb ∈ Fn−n1
2 :

if#{F̃ | G̃(b) = 1} > s/2:
G(b) := 1 (otherwise 0)

return
∑

bG(b)

Complexity

T (n) = time of a sizen instance
Rec. calls: T1 = O∗

(
T (n1) ·

(
n−n1

↓d`−n1

))
Interpolation and last loop: T2 = O∗ (2n−n1)

Similarly, we forceT1 ≈ T2 so that have

complexity =

 O∗
(
20.804n

)
if d = 2, and

O∗
(
2(1−1/(2.7d))n

)
if d > 2

10

Dinur’s first

SimilarlyWn
w := {a ∈ Fn2 | wt(a) ≤ w}

parameters: n, n1, n2 < n1, s, `,

Compute
[
G(b) : b ∈ Fn−n1

2

]
by

one recursive call to the algorithm
computing

[G(b) : b ∈ Wn−n1
w]

Finally,

return Parity=
∑

b∈Fn−n1
2

G(b)

Complexity

complexity =

 O∗
(
20.6943n

)
if d = 2, and

O∗
(
2(1−1/(2d))n

)
if d > 2

11

Dinur’s first

SimilarlyWn
w := {a ∈ Fn2 | wt(a) ≤ w}

parameters: n, n1, n2 < n1, s, `,

Compute
[
G(b) : b ∈ Fn−n1

2

]
by

one recursive call to the algorithm
computing

[G(b) : b ∈ Wn−n1
w]

Finally,

return Parity=
∑

b∈Fn−n1
2

G(b)

Complexity

complexity =

 O∗
(
20.6943n

)
if d = 2, and

O∗
(
2(1−1/(2d))n

)
if d > 2

11

Dinur’s first

SimilarlyWn
w := {a ∈ Fn2 | wt(a) ≤ w}

parameters: n, n1, n2 < n1, s, `,

Compute
[
G(b) : b ∈ Fn−n1

2

]
by

one recursive call to the algorithm
computing

[G(b) : b ∈ Wn−n1
w]

Finally,

return Parity=
∑

b∈Fn−n1
2

G(b)

Complexity

complexity =

 O∗
(
20.6943n

)
if d = 2, and

O∗
(
2(1−1/(2d))n

)
if d > 2

11

Dinur’s first

SimilarlyWn
w := {a ∈ Fn2 | wt(a) ≤ w}

parameters: n, n1, n2 < n1, s, `,

Compute
[
G(b) : b ∈ Fn−n1

2

]
by

one recursive call to the algorithm
computing

[G(b) : b ∈ Wn−n1
w]

Finally,

return Parity=
∑

b∈Fn−n1
2

G(b)

Complexity

complexity =

 O∗
(
20.6943n

)
if d = 2, and

O∗
(
2(1−1/(2d))n

)
if d > 2

11

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.

parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:

GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm

compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃

1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0

2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Dinur’s second

Let p1, . . . , pm be the input polys. Here we doesn’t accurately computeG.
parameters: n, n1

Repeat few times do the following:
GenerateR1, . . . , Rn1+1 random lin.
comb. of p1, . . . , pm
compute the truth table of G̃
1 ∀ (b, c) ∈ Wn−n1

d(n1+1)−n1
× Fn1

2 :

∀ i Ri(b, c) = 0 ?

Yes: G̃(b) = 1 No: G̃(b) = 0
2 Interpolate G̃.

For eachb ∈ Fn−n1
2 s.t G̃(b) = 1

somehow compute c ∈ Fn−n1
2 s.t

∀ i Ri(b, c) = 0

if (b, c) showed up before, then check if
p1(b, c) = · · · = pn1+1(b, c) = 0

continue until one solution is found

Complexity

complexity =

 O
(
n2 · 20.815n

)
if d = 2, and

O
(
n2 · 2(1−1/(2.7d))n

)
if d > 2

12

Practical results

Probability of success
Björklund et al.’s withλ = 0.1967 and several values of s.

s = 48n+ 1 in Björklund and Dinur’s first

Internal iterations can be reduced!

similar result for Dinur1

A bit fluctuant for Lokshtanov (still small)

Dinur2 always success probability≥ 0.9

13

Practical times complexities

Figure 3.1: Clock-cycles of the probabilistic algorithms andBruteforce algorithm on randomly generated
square quadratic systems overF2 with a unique solution.

14

Rate of growth and outperformance of bruteforce (BF)

Table 1: Growth rate of the practical complexity of solving a square quadratic system with at most one
solution. In the first three rows, it means with probability of success greater than 2/3.

Algorithm
Experimental Theoretical Beat (BF) for

nmax (14 ≤ n ≤ nmax) (n→∞) n ≥

Lokshtanov et al.’s 17 20.912 20.876 129

Björklund et al.’s 25 20.876 20.804 60

Dinur’s first 25 20.971 20.694 132

Dinur’s second 30 20.818 20.815 33

Bruteforce 30 21.022 21

15

Future work?

1 Fast implementations?
2 Parallel implementations (on GPUs)? How deal with memory access cost?
3 Quantum versions of the algorithms?

16

Future work?

1 Fast implementations?

2 Parallel implementations (on GPUs)? How deal with memory access cost?
3 Quantum versions of the algorithms?

16

Future work?

1 Fast implementations?
2 Parallel implementations (on GPUs)? How deal with memory access cost?

3 Quantum versions of the algorithms?

16

Future work?

1 Fast implementations?
2 Parallel implementations (on GPUs)? How deal with memory access cost?
3 Quantum versions of the algorithms?

16

tii.ae

References I

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.
In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020,
pages 183–211, Cham, 2020. Springer International Publishing.

[Beu21] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar
maps. In Andreas Hülsing and Riham AlTawy, editors, Selected Areas in Cryptography.
Springer International Publishing, 2021.

[CFMR+17] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryckeghem.
GeMSS: A great multivariate short signature. NIST CSRC, 2017. Official website:
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

18

https://www-polsys.lip6.fr/Links/NIST/GeMSS.html

References II

[CHR+18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. SOFIA:MQ-based signatures in the qrom. In Michel Abdalla and Ricardo
Dahab, editors, Public-Key Cryptography – PKC 2018, pages 3–33, Cham, 2018. Springer
International Publishing.

[CHR+20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. MQDSS specifications, 2020.
http://mqdss.org/specification.html.

[DCP+17] J. Ding, M.S. Chen, A. Petzoldt, D. Schmidt, and B.Y. Yang. Rainbow. NIST CSRC, 2017.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/Rainbow.zip.

[Deu85] David Deutsch. Quantum Theory, the Church–Turing Principle and the Universal
Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97–117, 1985.

19

http://mqdss.org/specification.html

Valiant–Vazirani affine hashing

it isolates one solution to the system
add k random linear equations to original system
k = log |S|, whereS is the set of solutions.
For the probabilityPr[Ux] thatx ∈ S is the only solution, we have

Pr[Ux] ≥
1

2k+3
.

Therefore
Pr[∪x∈SUx] =

∑
x∈S

Pr[Ux] ≥
1

8
.

repeat this up to 8n log n times. With probability 1− 1/n some of the solutions would be
isolated.

19

U0 (y) =
∑
b∈Fn1

2

F̃ (y, b) and Ui (y) =
∑

b∈Fn1−1
2

F̃|bi=0 (y, b) for i = 1, . . . , n1,

20

	Preliminaries concepts
	Approximation techniques

	Probabilistic algorithms
	Lokshtanov et al.’s
	Björklund et al.’s
	Dinur's first
	Dinur's second

	Practical results
	References

