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Input: a set of polynomials f1(z1,...,2y),. .., fm(z1,...,2,) innunknowns with
coefficientsin[F,

Output: (a1, ..., a,) € Iy such that

fl(al,...,an):---:fm(al,...,an):0
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m NP-complete, any decision problem reduces to it.

m Directly to Multivariate cryptography
m Algebraic attacks:
Legendre Pseudorandom Generation
hash functions
Cipher
etc
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m (2017) First algorithm asymptotically faster

m Bruteforce (complexity 4 log n - 2") than bruteforce in the worst-case.
m direct linearization "Beating Brute Force for Systems of Polynomial
m Extended linearization (XL) Equations over Finite Fields" D. Lokshtanov, R.
m Grobner basis: Buchberger’s, F4, Patur, S. Tamaki, and R. Williams
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Some algorithms to solve the polynomilas over finite fields

m (2017) Firstalgorithm asymptotically faster

m Bruteforce (complexity 4 log n - 2") than bruteforce in the worst-case.
m direct linearization "Beating Brute Force for Systems of Polynomial
m Extended linearization (XL) Equations over Finite Fields" D. Lokshtanov, R.
m Grobner basis: Buchberger’s, F4, Patur, S. Tamaki, and R. Williams
and F5. m (2019) Improved by A. Bjorklund, P Kaski, and
m Hybrid approaches: R. Williams
BooleanSolve, Hybrid-F5, Solving Systems of Polynomial Equations over
Crossbred. GF(2) by a Parity-Counting Self-Reduction
m special algorithms for m (2021) Improved by I. Dinur
underdefined systems (m < n) "Solving Polynomial Systems over GF(2) by

Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial

Method for Solving Multivariate Equation Systems
P il o 4o A 14

None of them outperform
bruteforce asymptotically, in the
worst-case!
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Definition: A Boolean functionisamap f : F5 — IFo.
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Definition: A Boolean functionisamap f : F5 — Fo.

Note: f can be uniquely represented in Fa[z1, ..., z,] /(22 — 21,..., 22 — ).

fi= Z Cr(a)-x*,  wherex® := z{'z3?--- 23" and(¢(a) € Fy
acky

Representing f as a vector of size 2.

s
(@lacF] 22—  [f@)|acH]
~—_—— Zeta transform ~—_——

Algebraic Normal Form (ANF) Truth table
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Definition: A Boolean functionisamap f : Fy — [Fa.

Note: f can be uniquely represented in Fa[z1, ..., z,] /(22 — 21,..., 22 — ).
f= Z Cr(a) - x*,  wherex® :=z]'z3? .-z and(¢(a) € Fy
acky

Representing f as a vector of size 2.

¢lf]
[((a) | a € F3] [f(a) | a € F3]
Zeta transform —_—
Algebraic Normal Form (ANF) Truth table

m ([ANFof f] = truthtableof f,  ([truthtable of f] = ANFof f

= KL =7
m Complexity = O(n2")
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Interpolation algorithm

Input: The partial truth table [f(a) : a € A] withsupp(f) € A, and A C F% adownward

closed set.”
Output: The whole truth table [f(a) : a € F3].

m it has complexity O(n2").

m if f hasdegree d, thenknow [f(a) : a € F%, andwt(a) < d] has enough information to
compute the whole truth table of f

"downward closed set: if A C F7 is a downward closed set, thatis, ifa € Aimpliesthatb € Aforeveryb € F¥
withb < a
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Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)

The polynomial
m

F(x) =[]+ pi())
i=1
is called the characteristic polynomial of the system p1 (X), . . ., pm (X).
Properties
2 F(a) =16 pi(a) = p(a) = 0

m deg(p;) =d = deg(F) =md (very high)

mG:Fy™ 5 Fy, st Gy):= ZCG]F;H F(y,c)

G(b) =1 = F(b,c) = 1forsomec € Fy".
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G : Fnz—m — Iy

s.t.

G(Y) =D cern Iy )



G:Fy™ —=F, st G(y) =gy c)
G(b) =1 = F(b,c) = 1forsomec € F;".
deg(G) =dm —ny  (Still very high!).

b
: Cryptography
Research
%, Centre



G:Fy ™ =T st Gy):=> e Fly,c)
G(b) =1 = F(b,c) = 1forsomec € F;".
deg(G) =dm —ny  (Still very high!).
Parity := ZbEF;_nl G(b) = ZaeIFg F(a) (parity of the number of solutions)

000
Cryptography
Research
Centre

o
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G:Fy ™ =T st Gy):=> e Fly,c) ,,,4,,>55*?e“"
G(b) =1 = F(b,c) = 1forsomec € F;". B
deg(G) =dm —ny  (Still very high!).
Parity := ZbEF;_nl G(b) = ZaeIFg F(a) (parity of the number of solutions)

m Bjorklund etal’s: (many G) to compute Parity.
m Dinur’s first: (many @) to compute Parity.

m Dinur’ssecond: ( ) A method to estimate c for every b such thaté(b) =1.



. n—m . : = Cryptography
G:Fy ™ =T st Gy):=> e Fly,c) -,,,>53?e'c"
G(b) =1 = F(b,c) = 1forsomec € F;". B
deg(G) =dm —ny  (Still very high!).
Parity := Zbng_nl G(b) = ZaeIFg F(a) (parity of the number of solutions)

m Bjorklund etal’s: (many G) to compute Parity.
m Dinur’s first: (many G‘) to compute Parity.

m Dinur’ssecond: ( ) A method to estimate c for every b such that@(b) =1.

Lokshtanov et al.’s: Determine the consistency by a precise approx. of V/, where

V(b)= ) sc.F(b,c)

cngl
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IfPr|F(a) = F(a)] is close to one, then F approximates F'.

The Razborov—Smolensky construction

Let/ € {1,...,m} beaninteger. Define

m 4
F(x)=[[Q+px) F):=]]0+Rix),
=1 1=1
where R;(x) := 37" | @jp;(x),and the a;; € o are chosen uniformly at random.
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Approximation techniques

IfPr|F(a) = F(a)] is close to one, then F approximates F'.

The Razborov—Smolensky construction

Let/ € {1,...,m} beaninteger. Define

m y4

F(x)= [0 +mx) F@) =[]0+ Rix),

i=1 i=1

where R;(x) := 37" | @jp;(x),and the a;; € o are chosen uniformly at random.

m deg(F) < dt m V(b) =Y e scF(b,c)
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Approximation techniques : ) o

IfPr|F(a) = F(a)] is close to one, then F approximates F'.

The Razborov—Smolensky construction

Let/ € {1,...,m} beaninteger. Define

m 4
F(x)=[[Q+px) F):=]]0+Rix),
=1 1=1
where R;(x) := 37" | @jp;(x),and the a;; € o are chosen uniformly at random.

m deg(F) < dt m V(b) =Y e scF(b,c)
m F(a) =1— F(a) = 1,otherwise m Still, erros appear for many b € F; ™™
m Pr|F(a) = F(a)] >1-27¢ m generate many I and define

N s G(b) =1 <= #{F:G(b) =1} > t,,
m G(y) = Zcngl Fy,c) fora fixed integer .
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Suppose that the input polynomials have degree d.

m parameters: n,ny, s, £
mfort=1,...,s
Symbolically compute the ANF

Thy)= 3 sef(y,0),

ceFyt

with a new F for each c.
compute ¢(Vp) (truth table of V) .
store (Vp)
m forb € Fg—m:
if#{V(b) = 1} > 0.4s:
return True.

m otherwise return False
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Suppose that the input polynomials have degree d.

m parameters: n,ny, s, £
mfort=1,...,s
Symbolically compute the ANF

Thy)= 3 sef(y,0),

ny

ceF,

with a new F foreach c.

compute ¢(Vp) (truth table of V) .

B store (Vo)
m forb € Fy—"
if#{V(b) = 1} > (0.4s:
return True.

m otherwise return False

Complexity
Firstloop: 17 = O* (2n1 : (ﬁe_fﬁl))

Second loop: 75 = O* (2"~™)

Setting/ = n; + 2,n1 = [dn |, and choosing d s.t
T, ~ T we have

O*(208756n) ifd = 2, and
complexity =
O*(21-1/Gdny fd > 2
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Input polynomials p1, . . ., p, have degree d, and W}* := {a € [} | wt(a) <t}

m parameters:n,ni, S, ¢
Computes [G(b) : beFy ™|
mfork=1,.
G(b )foreachb € Wy, by
recursive calls to B]orklund salgo.

Note: G(b) =", e F(b,z).

Interpolate G and store it
m forb € IFS;"I:
if#{F | G(b) =1} > s/2:
G(b) := 1 (otherwise 0)
return ), G(b)
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Input polynomials p1, . . ., p, have degree d, and W}* := {a € [} | wt(a) <t} |

m parameters:n,ni, S, ¢
Computes [G(b) : b € Fy ™ ]
mfork=1,...,s
G(b)foreachb € We, ' by
recursive calls to Bjorklund’s algo.
Note: é(b) = Zze]}‘;l F(b, z).

Interpolate G and store it
m forb € IFS;”I:
if#{F | G(b) =1} > s/2:
G(b) := 1 (otherwise 0)
return ), G(b)

Complexity
T'(n) =time of asize n instance

Rec. calls: Ty = O* <T(n1) : (ﬁz__rlﬁl))

Interpolation and last loop: 75 = O* (2"~ ™)
Similarly, we force T1 = T5 so that have
O*(29804n) if d = 2, and

complexity =
O*(2(1—1/(2A7d))n) ifd > 2
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m Compute [G(b) : b € F;~ "] by
one recursive call to the algorithm
computing

[G(b) : beWwn—m|
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m parameters: n, ny,ns < ni, s, t,

m Compute [G(b) : b € F;~ "] by
one recursive call to the algorithm
computing
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m Finally,

return Parity =3 0 G(b)
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m Compute [G(b) : b € F;~ "] by
one recursive call to the algorithm
computing

[G(b) : beWwn—m|

m Finally,

return Parity =3 0 G(b)
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Complexity

O*(2069431) if d = 2, and
complexity =
O*(21-1/@dn) jfg > 2
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Letpy, ..., pm betheinput polys. Here we doesn't accurately compute G.
parameters: 1, ng

Repeat few times do the following:
m Cenerate Ry, ..., Ry, +1 random lin.
comb.ofp1,...,pm
m compute the truth table of G
¥ (b,c) e Wi M X TR
Vi Ri(b,c) =02

Interpolate G.
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Letpy, ..., pm betheinput polys. Here we doesn't accurately compute G.
parameters: 1, ng

Repeat few times do the following:

m Cenerate Ry, ..., Ry, +1 random lin.
comb.ofp1,...,pm
m compute the truth table of G

¥ (b,c) e Wi M X TR

Vi Ri(b,c) =02

Interpolate G.
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Letpy, ..., pm betheinput polys. Here we doesn't accurately compute G.
parameters: 1, ng

Repeat few times do the following:

m Generate Ry, ..., Ry, ;1 randomlin. | m if(b,c)showed up before, then checkiif
comb.ofp1,...,pm pl(bvc) = :pm+1(b,c) =0

m compute the truth table of G m continue until one solution is found
¥ (b,e) € Wi ™, X Fy

Vi Ri(b,c) =02

Interpolate G.

m Foreachb € F) ™ stG(b) = 1
somehow computec € F5 ™" st
Vi RZ (b, C) =0




Dinur’s second
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Letpy, ..., pm betheinput polys. Here we doesn't accurately compute G.

parameters: 1, ng

Repeat few times do the following:

m Cenerate Ry, ..., Ry, +1 random lin.

comb.ofp1,...,pm
m compute the truth table of G

¥ (b,c) e W™ x Fo

d(n1+1)—nq
Vi R;(b,c) =0?

Interpolate G.

m Foreachb € F) ™ stG(b) = 1
somehow computec € F5 ™" st
Vi RZ (b, C) =0

m if (b, c) showed up before, then check if
pi(b,c) = =pp,41(b,c) =0
m continue until one solution is found

Complexity

0O (n2 . 20'815”) ifd =2, and
complexity =
O (n? - 20-1/@T)n) if g > 2



Practical results



Probability of success
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Bjorklund et al’s withA = 0.1967 and several values of s.

—— s=61
— s=55
s=51

— s=45 — s=35 — s=25 — s=11
s=41 s=31 s=15 — s=1

=

o
© oP
o NN

Probability
o o o o o

o

QAN

6 7 8 910111213141516171819202122232425

Number of Variables

® s = 48n + 1in Bjorklund and Dinur’s first
® Internal iterations can be reduced!

® similar result for Dinurl

@ Abit fluctuant for Lokshtanov (still small)

@ Dinur2 always success probability > 0.9



Practical times complexities
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Rate of growth and outperformance of bruteforce (BF)
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Table 1: Growth rate of the practical complexity of solving a square quadratic system with at most one
solution. In the first three rows, it means with probability of success greater than 2/3.

Experimental Theoretical Beat (BF) for
Algorithm Nmar 14 <n < npae) M — 00) n >
Lokshtanovetal’s 17 20-912 20876 129
Bjorklund etal’s 25 20.876 20-804 60
Dinur’s first 25 20-971 20694 132
Dinur’s second 30 20-818 20-815 33
Bruteforce 30 21.022 2!




Future work?
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Fastimplementations?



Future work?

Fastimplementations?

Parallel implementations (on GPUs)? How deal with memory access cost?
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Future work?

Fastimplementations?
Parallel implementations (on GPUs)? How deal with memory access cost?

Quantum versions of the algorithms?

)

Cryptography
Research
Centre



Cryptography
Research

Technology
TI I Innovation
Institute Centre

tii.ae



References |

o 0,
Cryptography
. Research
: Centre

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes.

In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology— EUROCRYPT 2020,
pages183—211, Cham, 2020. Springer International Publishing.

[Beu21] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar

[CFMR™17]

maps. In Andreas Hiilsing and Riham AlTawy, editors, Selected Areas in Cryptography.
Springer International Publishing, 2021.

A. Casanova, ].-C. Faugere, G. Macario-Rat, ). Patarin, L. Perret, and ). Ryckeghem.
GeMSS: A great multivariate short signature. NIST CSRC, 2017. Official website:
https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.


https://www-polsys.lip6.fr/Links/NIST/GeMSS.html

References I|

[CHRT18]

[CHR*20]

[DCP*17]

[Deus8s5]

o 0,
Cryptography
. Research
: Centre

Ming-Shing Chen, Andreas Hiilsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. SOFIA: M Q-based signatures in the grom. In Michel Abdalla and Ricardo
Dahab, editors, Public-Key Cryptography — PKC 2018, pages 3—33, Cham, 2018. Springer
International Publishing.

Ming-Shing Chen, Andreas Hiilsing, Joost Rijneveld, Simona Samardjiska, and Peter
Schwabe. MQDSS specifications, 2020.
http://mqdss.org/specification.html.

]. Ding, M.S. Chen, A. Petzoldt, D. Schmidt, and BY. Yang. Rainbow. NIST CSRC, 2017.
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/Rainbow.zip.

David Deutsch. Quantum Theory, the Church-Turing Principle and the Universal
Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and
Physical Sciences, 400(1818):97-117,1985.


http://mqdss.org/specification.html

Valiant-Vazirani affine hashing
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m itisolates one solution to the system

m add k random linear equations to original system
mk=
m Forthe probability Pr[U,] thatx € S isthe only solution, we have

,where S'is the set of solutions.

Pr[U;] >

1
>
2
Therefore
Pr(UpesUs] = > Pr[U;] >
zeS

OO\’i

m repeat this up to 8n log n times. With probability 1 — 1/n some of the solutions would be
isolated.
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