

# Practical complexities of probabilistic algorithms for solving Boolean polynomial systems 

January 19, 2022

Stefano Barbero ${ }^{1}$, Emanuele Bellini ${ }^{2}$, Carlo Sanna ${ }^{1}$, and Javier Verbel ${ }^{2}$
${ }^{1}$ Politecnico di Torino, Torino, IT $\quad{ }^{2}$ Technology Innovation Institute, Abu Dhabi, UAE

## Definition (Polynomial Solving Problem)

Input: a set of polynomials $f_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, \ldots, x_{n}\right)$ in $n$ unknowns with coefficients in $\mathbb{F}_{q}$

Output: $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{F}_{q}^{n}$ such that

$$
f_{1}\left(a_{1}, \ldots, a_{n}\right)=\cdots=f_{m}\left(a_{1}, \ldots, a_{n}\right)=0
$$

## Polynomial Solving in Cryptography

## Polynomial Solving in Cryptography

- $\mathcal{N} \mathcal{P}$-complete, any decision problem reduces to it.


## Polynomial Solving in Cryptography

■ $\mathcal{N P}$-complete, any decision problem reduces to it.
■ Directly to Multivariate cryptography

## Polynomial Solving in Cryptography

Cryptography
Research
Centre

■ $\mathcal{N} \mathcal{P}$-complete, any decision problem reduces to it.

- Directly to Multivariate cryptography
- Algebraic attacks:

1 Legendre Pseudorandom Generation
2 hash functions
3 Cipher
4 etc

Some algorithms to solve the polynomilas over finite fields

Some algorithms to solve the polynomilas over finite fields

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )


## Some algorithms to solve the polynomilas over finite fields

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization


## Some algorithms to solve the polynomilas over finite fields

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization
- Extended linearization (XL)


## Some algorithms to solve the polynomilas over finite fields

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization

■ Extended linearization (XL)
■ Gröbner basis: Buchberger's, F4, and F5.

## Some algorithms to solve the polynomilas over finite fields

Cryptography
Research
Centre

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization

■ Extended linearization (XL)
■ Gröbner basis: Buchberger's, F4, and F5.

■ Hybrid approaches:
BooleanSolve, Hybrid-F5, Crossbred.

## Some algorithms to solve the polynomilas over finite fields

Cryptography
Research
Centre

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization
- Extended linearization (XL)

■ Gröbner basis: Buchberger's, F4, and F5.

- Hybrid approaches:

BooleanSolve, Hybrid-F5, Crossbred.

- special algorithms for
underdefined systems ( $m<n$ )


## Some algorithms to solve the polynomilas over finite fields

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization

■ Extended linearization (XL)
■ Gröbner basis: Buchberger's, F4, and F5.

■ Hybrid approaches:
BooleanSolve, Hybrid-F5, Crossbred.

- special algorithms for
underdefined systems ( $m<n$ )
None of them outperform
bruteforce asymptotically, in the


## Some algorithms to solve the polynomilas over finite fields

- (2017) First algorithm asymptotically faster than bruteforce in the worst-case.
"Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R.

Patur, S. Tamaki, and R. Williams

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization

■ Extended linearization (XL)
■ Gröbner basis: Buchberger's, F4, and F5.

- Hybrid approaches:

BooleanSolve, Hybrid-F5, Crossbred.

- special algorithms for underdefined systems ( $m<n$ )

None of them outperform bruteforce asymptotically, in the

## Some algorithms to solve the polynomilas over finite fields

- (2017) First algorithm asymptotically faster than bruteforce in the worst-case.
"Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R. Patur, S. Tamaki, and R. Williams
- (2019) Improved by A. Björklund, P. Kaski, and R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction

- Bruteforce (complexity $4 \log n \cdot 2^{n}$ )
- direct linearization

■ Extended linearization (XL)
■ Gröbner basis: Buchberger's, F4, and F5.

- Hybrid approaches:

BooleanSolve, Hybrid-F5, Crossbred.

- special algorithms for underdefined systems ( $m<n$ )

None of them outperform bruteforce asymptotically, in the

## Some algorithms to solve the polynomilas over finite fields

 Research Centre- (2017) First algorithm asymptotically faster than bruteforce in the worst-case.
"Beating Brute Force for Systems of Polynomial Equations over Finite Fields" D. Lokshtanov, R. Patur, S. Tamaki, and R. Williams
- (2019) Improved by A. Björklund, P. Kaski, and R. Williams

Solving Systems of Polynomial Equations over
GF(2) by a Parity-Counting Self-Reduction
■ (2021) Improved by I. Dinur
"Solving Polynomial Systems over GF(2) by Multiple Parity-Counting"
"Cryptanalytic Applications of the Polynomial Method for Solving Multivariate Equation Systems

Contents

1. Preliminaries concepts
2. Probabilistic algorithms
3. Practical results


## Boolean function

## Boolean function

Cryptography
Research
Centre

Definition: A Boolean function is a map $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
Note: $f$ can be uniquely represented in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
f:=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} \zeta_{f}(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text { where } \mathbf{x}^{\mathbf{a}}:=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \text { and } \zeta_{f}(\mathbf{a}) \in \mathbb{F}_{2}
$$

## Boolean function

Definition: A Boolean function is a map $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
Note: $f$ can be uniquely represented in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
f:=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} \zeta_{f}(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text { where } \mathbf{x}^{\mathbf{a}}:=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \text { and } \zeta_{f}(\mathbf{a}) \in \mathbb{F}_{2}
$$

## Representing $f$ as a vector of size $2^{n}$



$$
\underbrace{\left[f(\mathbf{a}) \mid \mathbf{a} \in \mathbb{F}_{2}^{n}\right]}_{\text {Truth table }}
$$

## Boolean function

Definition: A Boolean function is a map $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
Note: $f$ can be uniquely represented in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
f:=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} \zeta_{f}(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text { where } \mathbf{x}^{\mathbf{a}}:=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \text { and } \zeta_{f}(\mathbf{a}) \in \mathbb{F}_{2}
$$

## Representing $f$ as a vector of size $2^{n}$.

$$
\underbrace{\left[\zeta(\mathbf{a}) \mid \mathbf{a} \in \mathbb{F}_{2}^{n}\right]}_{\text {Algebraic Normal Form (ANF) }}
$$



## Boolean function

Definition: A Boolean function is a map $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$.
Note: $f$ can be uniquely represented in $\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}-x_{1}, \ldots, x_{n}^{2}-x_{n}\right)$.

$$
f:=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} \zeta_{f}(\mathbf{a}) \cdot \mathbf{x}^{\mathbf{a}}, \quad \text { where } \mathbf{x}^{\mathbf{a}}:=x_{1}^{a_{1}} x_{2}^{a_{2}} \cdots x_{n}^{a_{n}} \text { and } \zeta_{f}(\mathbf{a}) \in \mathbb{F}_{2}
$$

## Representing $f$ as a vector of size $2^{n}$



- $\zeta[$ ANF of $f]=$ truth table of $f, \quad \zeta[$ truth table of $f]=$ ANF of $f$
- $\zeta[\zeta[f]]=f$
- Complexity $=O\left(n 2^{n}\right)$


## Interpolation of Boolean function

${ }^{1}$ downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_{2}^{n}$ with $\mathbf{b} \leq \mathbf{a}$

## Interpolation of Boolean function

## Interpolation algorithm

Input : The partial truth table $[f(\mathbf{a}): \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ a downward closed set. ${ }^{1}$
Output: The whole truth table $\left[f(\mathbf{a}): \mathbf{a} \in \mathbb{F}_{2}^{n}\right]$.
${ }^{1}$ downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_{2}^{n}$ with $\mathbf{b} \leq \mathbf{a}$

## Interpolation of Boolean function

## Interpolation algorithm

Input : The partial truth table $[f(\mathbf{a}): \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ a downward closed set. ${ }^{1}$
Output: The whole truth table $\left[f(\mathbf{a}): \mathbf{a} \in \mathbb{F}_{2}^{n}\right]$.

- it has complexity $O\left(n 2^{n}\right)$.
${ }^{1}$ downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_{2}^{n}$ with $\mathbf{b} \leq \mathbf{a}$


## Interpolation of Boolean function

## Interpolation algorithm

Input : The partial truth table $[f(\mathbf{a}): \mathbf{a} \in \mathcal{A}]$ with $\operatorname{supp}(f) \subseteq \mathcal{A}$, and $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ a downward closed set. ${ }^{1}$
Output: The whole truth table $\left[f(\mathbf{a}): \mathbf{a} \in \mathbb{F}_{2}^{n}\right]$.

- it has complexity $O\left(n 2^{n}\right)$.

■ if $f$ has degree $d$, then know $\left[f(\mathbf{a}): \mathbf{a} \in \mathbb{F}_{2}^{n}\right.$, and $\left.w t(\mathbf{a}) \leq d\right]$ has enough information to compute the whole truth table of $f$

[^0]Characteristic polynomial of a system

## Characteristic polynomial of a system

Definition (Characteristic polynomial of system of polynomials)
The polynomial

$$
F(\mathbf{x}):=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right)
$$

is called the characteristic polynomial of the system $p_{1}(\mathbf{x}), \ldots, p_{m}(\mathbf{x})$.

## Characteristic polynomial of a system

## Definition (Characteristic polynomial of system of polynomials)

The polynomial

$$
F(\mathbf{x}):=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right)
$$

is called the characteristic polynomial of the system $p_{1}(\mathbf{x}), \ldots, p_{m}(\mathbf{x})$.

## Properties

- $F(\mathbf{a})=1 \Leftrightarrow p_{1}(\mathbf{a})=\cdots p_{m}(\mathbf{a})=0$

■ $\operatorname{deg}\left(p_{i}\right)=d \Longrightarrow \operatorname{deg}(F)=m d \quad$ (very high)

## Characteristic polynomial of a system

## Definition (Characteristic polynomial of system of polynomials)

The polynomial

$$
F(\mathbf{x}):=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right)
$$

is called the characteristic polynomial of the system $p_{1}(\mathbf{x}), \ldots, p_{m}(\mathbf{x})$.

## Properties

- $F(\mathbf{a})=1 \Leftrightarrow p_{1}(\mathbf{a})=\cdots p_{m}(\mathbf{a})=0$

■ $\operatorname{deg}\left(p_{i}\right)=d \Longrightarrow \operatorname{deg}(F)=m d \quad$ (very high)
■ $G: \mathbb{F}_{2}^{n-n_{1}} \rightarrow \mathbb{F}_{2} \quad$ s.t. $\quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})$

$$
G(\mathbf{b})=1 \Longrightarrow F(\mathbf{b}, \mathbf{c})=1 \text { for some } \mathbf{c} \in \mathbb{F}_{2}^{n_{1}} .
$$

$\underline{G: \mathbb{F}_{2}^{n-n_{1}}} \rightarrow \mathbb{F}_{2} \quad$ s.t. $\quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})$
$\underline{G: \mathbb{F}_{2}^{n-n_{1}}} \rightarrow \mathbb{F}_{2} \quad$ s.t. $\quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})$
1 $G(\mathbf{b})=1 \Longrightarrow F(\mathbf{b}, \mathbf{c})=1$ for some $\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}$.
[ $\operatorname{deg}(G)=d m-n_{1} \quad$ (Still very high!).
$\underline{G: \mathbb{F}_{2}^{n-n_{1}}} \rightarrow \mathbb{F}_{2} \quad$ s.t. $\quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})$
[ $G(\mathbf{b})=1 \Longrightarrow F(\mathbf{b}, \mathbf{c})=1$ for some $\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}$.
2 $\operatorname{deg}(G)=d m-n_{1} \quad$ (Still very high!).
3 Parity := $\sum_{\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}} G(\mathbf{b})=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} F(\mathbf{a}) \quad$ (parity of the number of solutions)

$$
\underline{G: \mathbb{F}_{2}^{n-n_{1}}} \rightarrow \mathbb{F}_{2} \quad \text { s.t. } \quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})
$$

$1 G(\mathbf{b})=1 \Longrightarrow F(\mathbf{b}, \mathbf{c})=1$ for some $\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}$.
$2 \operatorname{deg}(G)=d m-n_{1} \quad$ (Still very high!).
3 Parity $:=\sum_{\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}} G(\mathbf{b})=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} F(\mathbf{a}) \quad$ (parity of the number of solutions)

## Some algorithms computes a poly $\tilde{G}$ approximating $G$

- Björklund et al.'s: (many $\tilde{G})$ to compute Parity.
- Dinur's first: (many $\tilde{G})$ to compute Parity.
- Dinur's second: (few $\tilde{G})$ A method to estimate $\mathbf{c}$ for every $\mathbf{b}$ such that $\tilde{G}(\mathbf{b})=1$.

$$
\underline{G: \mathbb{F}_{2}^{n-n_{1}}} \rightarrow \mathbb{F}_{2} \quad \text { s.t. } \quad G(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} F(\mathbf{y}, \mathbf{c})
$$

$1 G(\mathbf{b})=1 \Longrightarrow F(\mathbf{b}, \mathbf{c})=1$ for some $\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}$.
$2 \operatorname{deg}(G)=d m-n_{1} \quad$ (Still very high!).
3 Parity $:=\sum_{\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}} G(\mathbf{b})=\sum_{\mathbf{a} \in \mathbb{F}_{2}^{n}} F(\mathbf{a}) \quad$ (parity of the number of solutions)

## Some algorithms computes a poly $G$ approximating $G$

- Björklund et al.'s: (many $\tilde{G})$ to compute Parity.
- Dinur's first: (many $\tilde{G})$ to compute Parity.
- Dinur's second: (few $\tilde{G})$ A method to estimate $\mathbf{c}$ for every $\mathbf{b}$ such that $\tilde{G}(\mathbf{b})=1$.

Lokshtanov et al.'s: Determine the consistency by a precise approx. of $V$, where

$$
V(\mathbf{b})=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} F(\mathbf{b}, \mathbf{c})
$$

## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$


## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise


## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise
- $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})] \geq 1-2^{-\ell}$


## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise
- $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})] \geq 1-2^{-\ell}$

■ $\tilde{G}(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{y}, \mathbf{c})$

## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise
- $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})] \geq 1-2^{-\ell}$

■ $\tilde{G}(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{y}, \mathbf{c})$

## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise
- $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})] \geq 1-2^{-\ell}$

■ $\tilde{G}(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{y}, \mathbf{c})$

- $\tilde{V}(\mathbf{b}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}} s_{\mathbf{c}} \tilde{F}(\mathbf{b}, \mathbf{c})}$
- Still, erros appear for many $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$


## Approximation techniques

If $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})]$ is close to one, then $\tilde{F}$ approximates $F$.

## The Razborov-Smolensky construction

Let $\ell \in\{1, \ldots, m\}$ be an integer. Define

$$
F(\mathbf{x})=\prod_{i=1}^{m}\left(1+p_{i}(\mathbf{x})\right) \quad \tilde{F}(x):=\prod_{i=1}^{\ell}\left(1+R_{i}(\mathbf{x})\right)
$$

where $R_{i}(\mathbf{x}):=\sum_{j=1}^{m} \alpha_{i j} p_{j}(\mathbf{x})$, and the $\alpha_{i j} \in \mathbb{F}_{2}$ are chosen uniformly at random.

- $\operatorname{deg}(\tilde{F}) \leq d \ell$
- $F(\mathbf{a})=1 \rightarrow \tilde{F}(\mathbf{a})=1$, otherwise
- $\operatorname{Pr}[\tilde{F}(\mathbf{a})=F(\mathbf{a})] \geq 1-2^{-\ell}$

■ $\tilde{G}(\mathbf{y}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{y}, \mathbf{c})$

- $\tilde{V}(\mathbf{b}):=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} \tilde{F}(\mathbf{b}, \mathbf{c})$
- Still, erros appear for many $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$
- generate many $\tilde{F}$ and define $G(\mathbf{b})=1 \Longleftrightarrow \#\{\tilde{F}: \tilde{G}(\mathbf{b})=1\}>t_{0}$, for a fixed integer $t_{0}$.



## Lokshtanov et al.'s

Suppose that the input polynomials have degree $d$.

## Lokshtanov et al.'s

Suppose that the input polynomials have degree $d$.

- parameters: $n, n_{1}, s, \ell$

■ for $t=1, \ldots, s$
1 Symbolically compute the ANF

$$
\tilde{V}_{0}(\mathbf{y})=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c}),
$$

with a new $\tilde{F}$ for each c.
2 compute $\zeta\left(V_{0}\right)$ (truth table of $V_{0}$ ).

## Lokshtanov et al.'s

Suppose that the input polynomials have degree $d$.

- parameters: $n, n_{1}, s, \ell$

■ for $t=1, \ldots, s$
1 Symbolically compute the ANF

$$
\tilde{V}_{0}(\mathbf{y})=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c})
$$

with a new $\tilde{F}$ for each c.
2 compute $\zeta\left(V_{0}\right)$ (truth table of $V_{0}$ ).
3 store $\zeta\left(V_{0}\right)$

## Lokshtanov et al.'s

Suppose that the input polynomials have degree $d$.

- parameters: $n, n_{1}, s, \ell$

■ for $t=1, \ldots, s$
1 Symbolically compute the ANF

$$
\tilde{V}_{0}(\mathbf{y})=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c})
$$

with a new $\tilde{F}$ for each c.
2 compute $\zeta\left(V_{0}\right)$ (truth table of $V_{0}$ ).
3 store $\zeta\left(V_{0}\right)$
$\square$ for $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ :
if $\#\{\tilde{V}(\mathbf{b})=1\}>0.4 s$ :
return True.

- otherwise return False


## Lokshtanov et al.'s

Suppose that the input polynomials have degree $d$.

- parameters: $n, n_{1}, s, \ell$

■ for $t=1, \ldots, s$
1 Symbolically compute the ANF

$$
\tilde{V}_{0}(\mathbf{y})=\sum_{\mathbf{c} \in \mathbb{F}_{2}^{n_{1}}} s_{\mathbf{c}} \tilde{F}(\mathbf{y}, \mathbf{c})
$$

with a new $\tilde{F}$ for each c.
2 compute $\zeta\left(V_{0}\right)$ (truth table of $V_{0}$ ).
3 store $\zeta\left(V_{0}\right)$
■ for $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ :
if $\#\{\tilde{V}(\mathbf{b})=1\}>0.4 s$ :
return True.

## Complexity

First loop: $T_{1}=O^{*}\left(2^{n_{1}} \cdot\binom{n-n_{1}}{\downarrow d \ell-n_{1}}\right)$
Second loop: $T_{2}=O^{*}\left(2^{n-n_{1}}\right)$
Setting $\ell=n_{1}+2, n_{1}=\lfloor\delta n\rfloor$, and choosing $\delta$ s.t $T_{1} \approx T_{2}$ we have
complexity $=\left\{\begin{array}{l}O^{*}\left(2^{0.8756 n}\right) \text { if } d=2, \text { and } \\ O^{*}\left(2^{(1-1 /(5 d)) n}\right) \text { if } d>2\end{array}\right.$

## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

- parameters: $n, n_{1}, s, \ell$

Computes $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$

## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

- parameters: $n, n_{1}, s, \ell$

Computes $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$
■ for $k=1, \ldots, s$
$1 \tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d \ell-n_{1}}^{n-n_{1}}$ by recursive calls to Björklund's algo.
Note: $\tilde{G}(\mathbf{b})=\sum_{\mathbf{z} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{b}, \mathbf{z})$.

## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

- parameters: $n, n_{1}, s, \ell$

Computes $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$

- for $k=1, \ldots, s$
$1 \tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d \ell-n_{1}}^{n-n_{1}}$ by recursive calls to Björklund's algo.
Note: $\tilde{G}(\mathbf{b})=\sum_{\mathbf{z} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{b}, \mathbf{z})$.
2 Interpolate $\tilde{G}$ and store it


## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

- parameters: $n, n_{1}, s, \ell$

Computes $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$

- for $k=1, \ldots, s$
$1 \tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d \ell-n_{1}}^{n-n_{1}}$ by recursive calls to Björklund's algo.
Note: $\tilde{G}(\mathbf{b})=\sum_{\mathbf{z} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{b}, \mathbf{z})$.
2 Interpolate $\tilde{G}$ and store it
- for $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ :

$$
\begin{aligned}
& \text { if } \#\{\tilde{F} \mid \tilde{G}(\mathbf{b})=1\}>s / 2: \\
& G(\mathbf{b}):=1 \text { (otherwise } 0 \text { ) }
\end{aligned}
$$

return $\sum_{\mathbf{b}} G(\mathbf{b})$

## Björklund et al.'s

Input polynomials $p_{1}, \ldots, p_{m}$ have degree $d$, and $\mathcal{W}_{t}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq t\right\}$

- parameters: $n, n_{1}, s, \ell$

Computes $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$
■ for $k=1, \ldots, s$
$1 \tilde{G}(\mathbf{b})$ for each $\mathbf{b} \in \mathcal{W}_{d \ell-n_{1}}^{n-n_{1}}$ by recursive calls to Björklund's algo.
Note: $\tilde{G}(\mathbf{b})=\sum_{\mathbf{z} \in \mathbb{F}_{2}^{n_{1}}} \tilde{F}(\mathbf{b}, \mathbf{z})$.
2 Interpolate $\tilde{G}$ and store it

- for $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ :

$$
\begin{aligned}
& \text { if } \#\{\tilde{F} \mid \tilde{G}(\mathbf{b})=1\}>s / 2: \\
& G(\mathbf{b}):=1 \text { (otherwise } 0 \text { ) }
\end{aligned}
$$

return $\sum_{\mathbf{b}} G(\mathbf{b})$

## Complexity

$T(n)=$ time of a size $n$ instance
Rec. calls: $T_{1}=O^{*}\left(T\left(n_{1}\right) \cdot\binom{n-n_{1}}{\downarrow d \ell-n_{1}}\right)$
Interpolation and last loop: $T_{2}=O^{*}\left(2^{n-n_{1}}\right)$
Similarly, we force $T_{1} \approx T_{2}$ so that have
complexity $=\left\{\begin{array}{l}O^{*}\left(2^{0.804 n}\right) \text { if } d=2, \text { and } \\ O^{*}\left(2^{(1-1 /(2.7 d)) n}\right) \text { if } d>2\end{array}\right.$

## Dinur's first

Similarly $\mathcal{W}_{w}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq w\right\}$

■ parameters: $n, n_{1}, n_{2}<n_{1}, s, \ell$,

## Dinur's first

Similarly $\mathcal{W}_{w}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq w\right\}$

■ parameters: $n, n_{1}, n_{2}<n_{1}, s, \ell$,
■ Compute $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$ by one recursive call to the algorithm computing

$$
\left[G(\mathbf{b}): \mathbf{b} \in \mathcal{W}_{w}^{n-n_{1}}\right]
$$

## Dinur's first

Similarly $\mathcal{W}_{w}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq w\right\}$

■ parameters: $n, n_{1}, n_{2}<n_{1}, s, \ell$,

- Compute $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$ by one recursive call to the algorithm computing

$$
\left[G(\mathbf{b}): \mathbf{b} \in \mathcal{W}_{w}^{n-n_{1}}\right]
$$

- Finally,
return Parity $=\sum_{\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}} G(\mathbf{b})$


## Dinur's first

Similarly $\mathcal{W}_{w}^{n}:=\left\{\mathbf{a} \in \mathbb{F}_{2}^{n} \mid w t(\mathbf{a}) \leq w\right\}$

■ parameters: $n, n_{1}, n_{2}<n_{1}, s, \ell$,
■ Compute $\left[G(\mathbf{b}): \mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}\right]$ by one recursive call to the algorithm computing

$$
\left[G(\mathbf{b}): \mathbf{b} \in \mathcal{W}_{w}^{n-n_{1}}\right]
$$

- Finally,

$$
\begin{aligned}
& \text { complexity } \\
& \text { complexity }=\left\{\begin{array}{l}
O^{*}\left(2^{0.6943 n}\right) \text { if } d=2, \text { and } \\
O^{*}\left(2^{(1-1 /(2 d)) n}\right) \text { if } d>2
\end{array}\right.
\end{aligned}
$$

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$.

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

- Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$


## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

- Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$
- compute the truth table of $\tilde{G}$


## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:
■ Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$

- compute the truth table of $\tilde{G}$
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0 ?
$$

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:
■ Generate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$

- compute the truth table of $\tilde{G}$
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0 ?
$$

Yes: $\tilde{G}(\mathbf{b})=1 \mathbf{N o}: \tilde{G}(\mathbf{b})=0$

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:
■ Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$

- compute the truth table of $\tilde{G}$
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$
$\forall i R_{i}(\mathbf{b}, \mathbf{c})=0$ ?
Yes: $\tilde{G}(\mathrm{~b})=1$ No: $\tilde{G}(\mathrm{~b})=0$
2 Interpolate $\tilde{G}$.


## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

- Generate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$
- compute the truth table of $\tilde{G}$
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$
$\forall i R_{i}(\mathbf{b}, \mathbf{c})=0$ ?
Yes: $\tilde{G}(\mathbf{b})=1$ No: $\tilde{G}(\mathbf{b})=0$
2 Interpolate $\tilde{G}$.
- For each $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t $\tilde{G}(\mathbf{b})=1$ somehow compute $\mathbf{c} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0
$$

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

- Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$
- compute the truth table of $\tilde{G}$
- if $(\mathbf{b}, \mathbf{c})$ showed up before, then check if $p_{1}(\mathbf{b}, \mathbf{c})=\cdots=p_{n_{1}+1}(\mathbf{b}, \mathbf{c})=0$
- continue until one solution is found
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0 ?
$$

$$
\text { Yes: } \tilde{G}(b)=1 \text { No: } \tilde{G}(b)=0
$$

2 Interpolate $\tilde{G}$.

- For each $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t $\tilde{G}(\mathbf{b})=1$ somehow compute $\mathbf{c} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0
$$

## Dinur's second

Let $p_{1}, \ldots, p_{m}$ be the input polys. Here we doesn't accurately compute $G$. parameters: $n, n_{1}$

Repeat few times do the following:

- Cenerate $R_{1}, \ldots, R_{n_{1}+1}$ random lin. comb. of $p_{1}, \ldots, p_{m}$
- compute the truth table of $\tilde{G}$
$1 \forall(\mathbf{b}, \mathbf{c}) \in \mathcal{W}_{d\left(n_{1}+1\right)-n_{1}}^{n-n_{1}} \times \mathbb{F}_{2}^{n_{1}}:$

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0 ?
$$

$$
\text { Yes: } \tilde{G}(\mathrm{~b})=1 \text { No: } \tilde{G}(\mathrm{~b})=0
$$

2 Interpolate $\tilde{G}$.

- For each $\mathbf{b} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t $\tilde{G}(\mathbf{b})=1$ somehow compute $\mathbf{c} \in \mathbb{F}_{2}^{n-n_{1}}$ s.t

$$
\forall i R_{i}(\mathbf{b}, \mathbf{c})=0
$$

- if $(\mathbf{b}, \mathbf{c})$ showed up before, then check if $p_{1}(\mathbf{b}, \mathbf{c})=\cdots=p_{n_{1}+1}(\mathbf{b}, \mathbf{c})=0$
- continue until one solution is found


## Complexity

complexity $=\left\{\begin{array}{l}O\left(n^{2} \cdot 2^{0.815 n}\right) \text { if } d=2, \text { and } \\ O\left(n^{2} \cdot 2^{(1-1 /(2.7 d)) n}\right) \text { if } d>2\end{array}\right.$


## Probability of success

Björklund et al.'s with $\lambda=0.1967$ and several values of $s$.


- $s=48 n+1$ in Björklund and Dinur's first
- Internal iterations can be reduced!
- similar result for Dinur1
- A bit fluctuant for Lokshtanov (still small)
- Dinur2 always success probability $\geq 0.9$


## Practical times complexities



## Rate of growth and outperformance of bruteforce (BF)

Table 1: Growth rate of the practical complexity of solving a square quadratic system with at most one solution. In the first three rows, it means with probability of success greater than $2 / 3$.

| Algorithm | $n_{\max }$ | Experimental <br> $\left(14 \leq n \leq n_{\max }\right)$ | Theoretical <br> $(n \rightarrow \infty)$ | Beat (BF) for <br> $n \geq$ |
| :---: | :---: | :---: | :---: | :---: |
| Lokshtanov et al.'s | 17 | $2^{0.912}$ | $2^{0.876}$ | 129 |
| Björklund et al.'s | 25 | $2^{0.876}$ | $2^{0.804}$ | 60 |
| Dinur's first | 25 | $2^{0.971}$ | $2^{0.694}$ | 132 |
| Dinur's second | 30 | $2^{0.818}$ | $2^{0.815}$ | 33 |
| Bruteforce | 30 | $2^{1.022}$ | $2^{1}$ |  |

Future work?

## Future work?

1 Fast implementations?

## Future work?

Cryptography
Research
Research
Centre

1 Fast implementations?
2 Parallel implementations (on GPUs)? How deal with memory access cost?

## Future work?

Cryptography
Research
Centre

1 Fast implementations?
2 Parallel implementations (on GPUs)? How deal with memory access cost?
3 Quantum versions of the algorithms?

tii.ae

## References I

[Beu20] Ward Beullens. Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology - EUROCRYPT 2020, pages 183-211, Cham, 2020. Springer International Publishing.
[Beu21] Ward Beullens. Mayo: Practical post-quantum signatures from oil-and-vinegar maps. In Andreas Hülsing and Riham AlTawy, editors, Selected Areas in Cryptography. Springer International Publishing, 2021.
[CFMR ${ }^{+}$17] A. Casanova, J.-C. Faugère, G. Macario-Rat, J. Patarin, L. Perret, and J. Ryckeghem. CeMSS: A great multivariate short signature. NIST CSRC, 2017. Official website: https://www-polsys.lip6.fr/Links/NIST/GeMSS.html.

## References II

[CHR ${ }^{+}$18] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. SOFIA: $\mathcal{M}$ Q-based signatures in the qrom. In Michel Abdalla and Ricardo Dahab, editors, Public-Key Cryptography - PKC 2018, pages 3-33, Cham, 2018. Springer International Publishing.
[CHR ${ }^{+}$20] Ming-Shing Chen, Andreas Hülsing, Joost Rijneveld, Simona Samardjiska, and Peter Schwabe. MQDSS specifications, 2020.
http://mqdss.org/specification.html.
[DCP ${ }^{+}$17] J. Ding, M.S. Chen, A. Petzoldt, D. Schmidt, and B.Y. Yang. Rainbow. NIST CSRC, 2017. https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-
Cryptography/documents/round-1/submissions/Rainbow.zip.
[Deu85] David Deutsch. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 400(1818):97-117, 1985.

## Valiant-Vazirani affine hashing

- it isolates one solution to the system

■ add $k$ random linear equations to original system

- $k=\log |S|$, where $S$ is the set of solutions.

■ For the probability $\operatorname{Pr}\left[U_{x}\right]$ that $x \in \mathcal{S}$ is the only solution, we have

$$
\operatorname{Pr}\left[U_{x}\right] \geq \frac{1}{2^{k+3}}
$$

Therefore

$$
\operatorname{Pr}\left[\cup_{x \in \mathcal{S}} U_{x}\right]=\sum_{x \in \mathcal{S}} \operatorname{Pr}\left[U_{x}\right] \geq \frac{1}{8}
$$

■ repeat this up to $8 n \log n$ times. With probability $1-1 / n$ some of the solutions would be isolated.

$$
U_{0}(y)=\sum_{b \in \mathbb{F}_{2}^{n_{1}}} \widetilde{F}(y, b) \quad \text { and } \quad U_{i}(y)=\sum_{b \in \mathbb{F}_{2}^{n_{1}-1}} \widetilde{F}_{\mid b_{i}=0}(y, b) \quad \text { for } \quad i=1, \ldots, n_{1},
$$


[^0]:    ${ }^{1}$ downward closed set: if $\mathcal{A} \subseteq \mathbb{F}_{2}^{n}$ is a downward closed set, that is, if $\mathbf{a} \in \mathcal{A}$ implies that $\mathbf{b} \in \mathcal{A}$ for every $\mathbf{b} \in \mathbb{F}_{2}^{n}$ with $\mathbf{b} \leq \mathbf{a}$

